Computability Assignment Year 2013/14 - Number 9

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

Please do not submit a file containing only the answers; edit this
file, instead, filling the answer sections.

1 Definition

If \sim is an equivalence relation over a set A, a set $B \subseteq A$ is closed under \sim if $\forall x \in B \ \forall y \in A \ (y \sim x \Rightarrow y \in B)$.

2 Question

Let \sim be the relation over $\mathbb N$ defined as $x \sim y$ if |x-y| is a multiple of 3. Show that \sim is an equivalence relation and determine all sets of natural numbers closed under \sim .

Hint 1: there is only a finite number of such sets.

Hint 2: take a look at question 3 below.

2.1 Answer

Let's prove that \sim is an equivalence relation:

- Reflexivity: $x \sim x \Leftrightarrow |x x| = 3k$ for some $k \in \mathbb{N}$. The property holds (pick k = 0), so the relation is reflexive.
- Symmetry: $x \sim y \Rightarrow |x y| = 2k$ for some $k \in \mathbb{N}$ $\Rightarrow |(-)(y x)| = 3k \Rightarrow |(-)||y x|| = 3k \Rightarrow |y x|| = 3k \Rightarrow y \sim x$.
- Transitivity: By hypothesis $x \sim y \Rightarrow |x-y| = 3m$ for some $m \in \mathbb{N}$ and $y \sim z \Rightarrow |y-z| = 3n$ for some $n \in \mathbb{N}$. Consider |x-z|. |x-z| = |(x-y)+(y-z)|. Since |x-y| = 3m, then $(x-y) = \pm 3m$ and since |y-z| = 3n, then $(y-z) = \pm 3n$. It follows that $|x-z| = |\pm 3m \pm 3n| = 3|\pm m \pm n|$ where $|\pm m \pm n| = k \in \mathbb{N}$. Since |x-z| = 3k, $x \sim z$.

We want to determine all sets of natural numbers closed under \sim . First of all, we claim that it exists only 3 equivalence classes of elements of \mathbb{N} : [0], [1], [2]. In fact, let $x \in \mathbb{N}$, then we can distinguish two cases:

- |n-0|=3k for some $k \in \mathbb{N}$: it follows that $n \in [0]$.
- $\forall k \in \mathbb{N}, |n-0| \neq 3k$: it follows that |n-0| = 3k+l, for some $k \in \mathbb{N}$ and $l \in \{1,2\}$:
 - if |n-0| = 3k+1, then n = 3k+1, i.e. n-1 = 3k. Since $m \in [1] \Leftrightarrow |m-1| = 3k$ for some $k \in \mathbb{N}$, then $n \in [1]$.
 - if |n-0| = 3k+2, then n = 3k+2, i.e. n-2 = 3k. Since $m \in [2] \Leftrightarrow |m-2| = 3k$ for some $k \in \mathbb{N}$, then $n \in [2]$.

Recalling the Question 3, $B \subseteq \mathbb{N}$ is closed under \sim iff $B = \bigcap_{j \in J} [j]$ where $J \subseteq \mathbb{N} \Rightarrow B = \bigcap_{j \in J} [j]$ where $J \subseteq \{0,1,2\}$. Since there could be only $2^{|\{0,1,2\}|} = 8$ possible sets J, there is only a finite number of such closed sets.

3 Question

Let \sim be an equivalence relation over a nonempty set A. Prove that a subset $B \subseteq A$ is closed under \sim if and only if it is a (possibly empty) union of equivalence classes of elements of A (for the definition of equivalence class of an element of A, see point 1 of).

3.1 Answer

We claim that $B \subseteq A$ is closed under $\sim \Leftrightarrow B = \bigcup_{z \in J} [z]$ where $J \subseteq A$. Clearly the property holds if $B = \emptyset$, therefore suppose $B \neq \emptyset$.

- PROOF \Leftarrow : Let $B = \bigcup_{z \in J} [z]$. Let $x \in B$, then $\exists y \in A$ such that $x \in [y] \subseteq B$. Since $x \sim y$, for all $z \in A$ such that $x \sim z$, it holds $z \sim y$. It follows that $z \in [y] \Rightarrow z \in B$. Therefore B is closed under \sim .
- PROOF \Rightarrow : Let B be closed under \sim . Since $B \subseteq A$, $\forall x \in B \exists y_x \in A$ such that $x \sim y_x$ (for example $y_x = x$, since \sim is a reflexive relation). It follows that $x \in [y_x]$. Let's define $J = \{y_x | x \in B\}$, therefore $B \subseteq \bigcup_{j \in J} [j]$. We claim that $\bigcup_{j \in J} [j] \subseteq B$: let $z \in [j] \Rightarrow z \sim j$. Since $j \sim x$ for some $x \in B$ (by definition), then $z \sim x$. B is closed under \sim , therefore $z \in B$.