Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, $p(x)$ and $q(x)$ will be two unary properties over natural numbers, and P and Q will denote the sets $P=\{x \in \mathbb{N}: p(x)$ holds $\}$ and $Q=\{x \in \mathbb{N}$: $q(x)$ holds $\}$. If possible, for each of the cases below find two properties $p(x)$ and $q(x)$ such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

1. $P \subset Q$ (strict inclusion);
2. $Q \subset P$ (strict inclusion);
3. $P \backslash Q \neq \emptyset$;
4. $Q \backslash P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

1. $\mathrm{p}(\mathrm{x})=(\mathrm{x}$ is divisible by 4$)$ and $\mathrm{q}(\mathrm{x})=(\mathrm{x}$ is even $)$. Then, $\forall x \in \mathbb{N} . p(x) \Rightarrow$ $q(x)$ and $P \subset Q$ as P is always smaller than Q .
2. It is not possible. $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ implies that for each element in P , it must also be in Q . So, either P is subset of Q or P is equal to Q .
3. It is not possible. From the argument as explained in $2, \mathrm{P}$ is subset of Q . Hence, P / Q is always empty.
4. The same example as 1 . As set Q is always larger than $\mathrm{P}, Q \backslash P \neq \emptyset$

2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N}\right\}=$ $\left\{x \mid \forall i \in \mathbb{N} x \in A_{i}\right\}$ and $\bigcap_{i=0}^{k} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cap A_{1} \cap \cdots \cap A_{k}$.

3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq A_{3} \cdots(*)
$$

For each property p_{i} shown below, state whether

- the hypothesis $(*)$ is sufficient to conclude that p_{i} holds; or
- the hypothesis $(*)$ is sufficient to conclude that p_{i} does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_{i}.

Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcap_{i=0}^{k} A_{i}$;
2. p_{2} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then there exists $j \in \mathbb{N}$ such that $A_{j}=A_{j+1}$;
3. p_{3} : for all i, if A_{i} is finite, then $A_{i}=A_{i+1}$;
4. p_{4} : if $\forall i \in \mathbb{N} . A_{i} \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_{i}=\emptyset$;
5. p_{5} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
7. p_{7} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is infinite.

3.1 Answer

1. Sufficient to conclude that p_{i} holds. As A_{k} is subset of all the sets A_{0} to A_{k-1}, all the elements of A_{k} should belong to all those sets. It can not have any extra element not belonging to all the sets before A_{k}
2. Sufficient to conclude that p_{i} holds. Since all the sets A_{i} are finite, the possible unique subsets of the set is also finite. But there are infinite A_{i}, hence some of the A_{i} must repeat. Also, from the condition that $A_{k-1} \supseteq A_{k}$, only the consecutive sets could be equal. Hence this property is true.
3. Insufficient. If $A_{i}=\{2,3,4,5\}$, then from the given condition we can say $A_{i} \supseteq A_{i+1}$ which means A_{i+1} can be $\{2,3,4,5\}$ in which case $A_{i}=A_{i+1}$ is satisfied. But, A_{i+1} can also be $\{2,3,4\}$ in which case $A_{i}=A_{i+1}$ is not true.
4. Insufficient.
5. Sufficient to conclude that p_{i} holds. The intersection of finite set is always finite.
6. Sufficient to conclude that p_{i} does not hold. As all sets are infinite and each $i+1$ th set is subset of i th set, the intersection should be infinite.
7. Sufficient to conclude that p_{i} holds
