Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, $p(x)$ and $q(x)$ will be two unary properties over natural numbers, and P and Q will denote the sets $P=\{x \in \mathbb{N}: p(x)$ holds $\}$ and $Q=\{x \in \mathbb{N}$: $q(x)$ holds $\}$. If possible, for each of the cases below find two properties $p(x)$ and $q(x)$ such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

1. $P \subset Q$ (strict inclusion);
2. $Q \subset P$ (strict inclusion);
3. $P \backslash Q \neq \emptyset$;
4. $Q \backslash P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

1. $\mathrm{p}(\mathrm{x})=\mathrm{x}>4, \mathrm{q}(\mathrm{x})=\mathrm{x}>2$
2. It is impossible. Assume that there exist some properties p and q such that $x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and $Q \subset P$. This means that there exists some $x \in P$ that is not in Q. Hence it is not true that $x \in \mathbb{N} . p(x) \Rightarrow q(x)$, and so we have a contradiction.
3. It is impossible. If $P \backslash Q \neq \emptyset$, that means that there are elements of P which are not in Q , and so it can not be true that $x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$.
4. $\mathrm{p}(\mathrm{x})=(\mathrm{x} \bmod 6=0), \mathrm{q}(\mathrm{x})=(\mathrm{x} \bmod 3=0)$

2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N}\right\}=$ $\left\{x \mid \forall i \in \mathbb{N} x \in A_{i}\right\}$ and $\bigcap_{i=0}^{k} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cap A_{1} \cap \cdots \cap A_{k}$.

3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq A_{3} \cdots(*)
$$

For each property p_{i} shown below, state whether

- the hypothesis $(*)$ is sufficient to conclude that p_{i} holds; or
- the hypothesis (*) is sufficient to conclude that p_{i} does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_{i}.

Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcap_{i=0}^{k} A_{i}$;
2. p_{2} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then there exists $j \in \mathbb{N}$ such that $A_{j}=A_{j+1}$;
3. p_{3} : for all i, if A_{i} is finite, then $A_{i}=A_{i+1}$;
4. p_{4} : if $\forall i \in \mathbb{N} . A_{i} \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_{i}=\emptyset$;
5. p_{5} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
7. $p_{7}:$ if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is infinite.

3.1 Answer

1. True. All the sets from A_{0} to A_{k} contain A_{k}, so their intersection is A_{k}.
2. True. If all the sets are finite, and each set is a subset of the previous, from a certain point all the sets will be equal, as they reach the maximum size and so it is not possible to add (nor to remove) elements.
3. the hypothesis is not sufficient to conclude anything about the truth of p_{3}. As we have seen with p_{2}, only after a certain i we can be sure that if all the sets are finite $A_{i}=A_{i+1}$
4. the hypothesis is not sufficient to conclude anything about the truth of p_{4}. If all the sets are different, it means that there exist some infinite sets, but their intersection has not to be empty.
5. True. The intersection of all the sets can contain at most the number of elements of the smallest set (henceis finite).
6. False. As all the sets are infinite, and each one is a subset of the previous, their intersection will be infinite
7. True. As all the sets are infinite, and each one is a subset of the previous, their intersection will be infinite
