Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, p(x) and q(x) will be two unary properties over natural numbers, and P and Q will denote the sets $P = \{x \in \mathbb{N} : p(x) \text{ holds}\}$ and $Q = \{x \in \mathbb{N} : q(x) \text{ holds}\}$. If possible, for each of the cases below find two properties p(x) and q(x) such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

- 1. $P \subset Q$ (strict inclusion);
- 2. $Q \subset P$ (strict inclusion);
- 3. $P \setminus Q \neq \emptyset$;
- 4. $Q \setminus P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

- 1. p(x) = x > 4, q(x) = x > 2
- 2. It is impossible. Assume that there exist some properties p and q such that $x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and $Q \subset P$. This means that there exists some $x \in P$ that is not in Q. Hence it is not true that $x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$, and so we have a contradiction.
- 3. It is impossible. If $P \setminus Q \neq \emptyset$, that means that there are elements of P which are not in Q, and so it can not be true that $x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$.
- 4. $p(x) = (x \mod 6 = 0), q(x) = (x \mod 3 = 0)$

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcap_{i=0}^{\infty}A_i=\bigcap\{A_i\mid i\in\mathbb{N}\}=\{x\mid\forall i\in\mathbb{N}\ x\in A_i\}$ and $\bigcap_{i=0}^kA_i=\bigcap\{A_i\mid i\in\mathbb{N}\ \land\ i\leq k\}=A_0\cap A_1\cap\cdots\cap A_k.$

3 Question

Assume $(A_i)_{i\in\mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$\mathbb{N} \supseteq A_0 \supseteq A_1 \supseteq A_2 \supseteq A_3 \cdots (*)$$

For each property p_i shown below, state whether

- the hypothesis (*) is sufficient to conclude that p_i holds; or
- the hypothesis (*) is sufficient to conclude that p_i does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. p_1 : $\forall k \in \mathbb{N}$. $A_k = \bigcap_{i=0}^k A_i$;
- 2. p_2 : if $\forall i \in \mathbb{N}$. A_i is finite, then there exists $j \in \mathbb{N}$ such that $A_j = A_{j+1}$;
- 3. p_3 : for all i, if A_i is finite, then $A_i = A_{i+1}$;
- 4. p_4 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_i = \emptyset$;
- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 7. p_7 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is infinite.

3.1 Answer

- 1. True. All the sets from A_0 to A_k contain A_k , so their intersection is A_k .
- 2. True. If all the sets are finite, and each set is a subset of the previous, from a certain point all the sets will be equal, as they reach the maximum size and so it is not possible to add (nor to remove) elements.
- 3. the hypothesis is not sufficient to conclude anything about the truth of p_3 . As we have seen with p_2 , only after a certain i we can be sure that if all the sets are finite $A_i = A_{i+1}$
- 4. the hypothesis is not sufficient to conclude anything about the truth of p_4 . If all the sets are different, it means that there exist some infinite sets, but their intersection has not to be empty.

- 5. True. The intersection of all the sets can contain at most the number of elements of the smallest set (henceis finite).
- 6. False. As all the sets are infinite, and each one is a subset of the previous, their intersection will be infinite
- 7. True. As all the sets are infinite, and each one is a subset of the previous, their intersection will be infinite