Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, p(x) and q(x) will be two unary properties over natural numbers, and P and Q will denote the sets $P = \{x \in \mathbb{N} : p(x) \text{ holds}\}$ and $Q = \{x \in \mathbb{N} : q(x) \text{ holds}\}$. If possible, for each of the cases below find two properties p(x) and q(x) such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

- 1. $P \subset Q$ (strict inclusion);
- 2. $Q \subset P$ (strict inclusion);
- 3. $P \setminus Q \neq \emptyset$;
- 4. $Q \setminus P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

- 1. Let $\forall x \in \mathbb{N}(q(x) \text{ holds})$ and $\forall x \in \mathbb{N}(p(x) \text{ holds} \Leftrightarrow x \text{ is even})$. So P is the set of the even numbers and $Q = \mathbb{N}$. P is strictly included in Q and $\forall x \in \mathbb{N}(p(x) \Rightarrow q(x))$.
- 2. It's impossible. $Q \subset P \Rightarrow \exists x \in \mathbb{N}(p(x) \land \neg q(x))$, but $\forall x \in \mathbb{N}(p(x) \Rightarrow q(x)) \equiv \neg \exists x \in \mathbb{N} \neg (\neg p(x) \lor q(x)) \equiv \neg \exists x \in \mathbb{N}(p(x) \land \neg q(x))$.
- 3. As above, it's impossible. $\forall x \in \mathbb{N}(p(x) \Rightarrow q(x)) \Rightarrow P \subseteq Q$ but $P \setminus Q \neq \emptyset \Rightarrow P \subsetneq Q$.
- 4. Taking the p and q from the first point is still valid, $\mathbb{N} \setminus P \neq \emptyset$.

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcap_{i=0}^{\infty}A_i=\bigcap\{A_i\mid i\in\mathbb{N}\}=\{x\mid\forall i\in\mathbb{N}\ x\in A_i\}$ and $\bigcap_{i=0}^kA_i=\bigcap\{A_i\mid i\in\mathbb{N}\ \land\ i\leq k\}=A_0\cap A_1\cap\cdots\cap A_k$.

3 Question

Assume $(A_i)_{i\in\mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$\mathbb{N} \supseteq A_0 \supseteq A_1 \supseteq A_2 \supseteq A_3 \cdots (*)$$

For each property p_i shown below, state whether

- the hypothesis (*) is sufficient to conclude that p_i holds; or
- the hypothesis (*) is sufficient to conclude that p_i does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. $p_1: \forall k \in \mathbb{N}. A_k = \bigcap_{i=0}^k A_i;$
- 2. p_2 : if $\forall i \in \mathbb{N}$. A_i is finite, then there exists $j \in \mathbb{N}$ such that $A_j = A_{j+1}$;
- 3. p_3 : for all i, if A_i is finite, then $A_i = A_{i+1}$;
- 4. p_4 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_i = \emptyset$;
- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is finite;
- 7. p_7 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcap_{i=0}^{\infty} A_i$ is infinite.

3.1 Answer

- 1. (*) is sufficient. (*) $\Rightarrow \forall k \in \mathbb{N}(\forall x (x \in A_{k+1} \Rightarrow (x \in A_k)) \Rightarrow \forall x \in A_k (x \in A_{k-1} \land x \in A_{k-2} \land \dots \land x \in A_0)$. So $\forall k \in \mathbb{N}$. $A_k = \bigcap_{i=0}^k A_i$.
- 2. (*) is sufficient. (*) $\Rightarrow \forall i \in \mathbb{N}(A_i \text{ finite } \Rightarrow |A_{i+1}| \leq |A_i|)$. $\forall i \in \mathbb{N}(A_i \text{ finite }) \Rightarrow A_0 \text{ finite.}$ Size of the sets can only decrease or remain constant. In the first case, there will obviously be an number h such that $A_h = \emptyset$ and for (*) $A_{h+1} \subseteq A_h \Rightarrow A_{h+1} = \emptyset = A_h$. In the second case $|A_i| = |A_{i+1}| \land (*) \Rightarrow A_i = A_{i+1}$.
- 3. We can't conclude anything about p_3 . Let $A_0 = \{1,2\}$, $A_1 = \{2\}$, $\forall i \in \mathbb{N} \setminus \{0,1\} (A_i = \emptyset)$. (*) is satisfied but p_3 isn't, because $\exists x \in \mathbb{N}(A_i \text{ is finite} \land A_i \neq A_{i+1} (i=0)$. But we can also find a family such that both (*) and p_3 are satisfied, so (*) isn't sufficient to conclude that p_3 does not hold. For instance, $\forall i \in \mathbb{N}(A_i = \{0\})$.

- 4. We can't conclude anything about p_4 . For instance, the family of sets $A_0 = \mathbb{N}$, $\forall i \in \mathbb{N} \setminus \{0\} (A_i = A_{i-1} \setminus \{i\})$ satisfies (*) and $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, but $\bigcap_{i=0}^{\infty} A_i = \{0\}$ so p_4 doesn't hold. But there are also families of sets that satisfies both (*) and p_4 . For instance, $A_0 = \mathbb{N} \setminus \{0\}$, $\forall i \in \mathbb{N} \setminus \{0\} (A_i = A_{i-1} \setminus \{i\})$.
- 5. (*) isn't even necessary to prove that p_5 holds. Given two sets A and B, $|A \cap B| \leq \min\{|A|, |B|\} \Rightarrow |A \cap B| \leq |A| \wedge |A \cap B| \leq |B|$. $\forall i \in \mathbb{N}(A_i \text{ is finite}) \Rightarrow \exists k \in \mathbb{N}(k \text{ is finite}) \Rightarrow |\bigcap_{i=0}^{\infty} A_i| \leq |A_k| \Rightarrow \bigcap_{i=0}^{\infty} A_i \text{ is finite}.$
- 6. We can't conclude anything. Let $\forall i \in \mathbb{N}(A_i = \mathbb{N}), \forall i \in \mathbb{N}(A_{i+1} = A_i) \Rightarrow \forall i \in \mathbb{N}(A_{i+1} \subseteq A_i) \text{ and } \bigcap_{i=0}^{\infty} A_i = \mathbb{N}, \text{ so this family satisfies (*) but not } p_6$. Now consider $A_0 = \mathbb{N} \setminus \{0\}, \forall i \in \mathbb{N} \setminus \{0\}(A_i = A_{i-1} \setminus \{i\})$: again $\forall i \in \mathbb{N}(A_{i+1} \subseteq A_i)$ but this time $\bigcap_{i=0}^{\infty} A_i = \emptyset$, so both (*) and p_6 are satisfied.
- 7. We can't conclude anything. See the families of sets at point 6.