Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, $p(x)$ and $q(x)$ will be two unary properties over natural numbers, and P and Q will denote the sets $P=\{x \in \mathbb{N}: p(x)$ holds $\}$ and $Q=\{x \in \mathbb{N}$: $q(x)$ holds $\}$. If possible, for each of the cases below find two properties $p(x)$ and $q(x)$ such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

1. $P \subset Q$ (strict inclusion);
2. $Q \subset P$ (strict inclusion);
3. $P \backslash Q \neq \emptyset$;
4. $Q \backslash P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

1. Let $\forall x \in \mathbb{N}(q(x)$ holds) and $\forall x \in \mathbb{N}(p(x)$ holds $\Leftrightarrow x$ is even $)$. So P is the set of the even numbers and $Q=\mathbb{N} . P$ is strictly included in Q and $\forall x \in \mathbb{N}(p(x) \Rightarrow q(x))$.
2. It's impossible. $Q \subset P \Rightarrow \exists x \in \mathbb{N}(p(x) \wedge \neg q(x))$, but $\forall x \in \mathbb{N}(p(x) \Rightarrow$ $q(x)) \equiv \neg \exists x \in \mathbb{N} \neg(\neg p(x) \vee q(x)) \equiv \neg \exists x \in \mathbb{N}(p(x) \wedge \neg q(x))$.
3. As above, it's impossible. $\forall x \in \mathbb{N}(p(x) \Rightarrow q(x)) \Rightarrow P \subseteq Q$ but $P \backslash Q \neq$ $\emptyset \Rightarrow P \subsetneq Q$.
4. Taking the p and q from the first point is still valid, $\mathbb{N} \backslash P \neq \emptyset$.

2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N}\right\}=$ $\left\{x \mid \forall i \in \mathbb{N} x \in A_{i}\right\}$ and $\bigcap_{i=0}^{k} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cap A_{1} \cap \cdots \cap A_{k}$.

3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq A_{3} \cdots(*)
$$

For each property p_{i} shown below, state whether

- the hypothesis $(*)$ is sufficient to conclude that p_{i} holds; or
- the hypothesis $(*)$ is sufficient to conclude that p_{i} does not hold; or
- the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{i}.

Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N}$. $A_{k}=\bigcap_{i=0}^{k} A_{i}$;
2. p_{2} : if $\forall i \in \mathbb{N} . A_{i}$ is finite, then there exists $j \in \mathbb{N}$ such that $A_{j}=A_{j+1}$;
3. p_{3} : for all i, if A_{i} is finite, then $A_{i}=A_{i+1}$;
4. p_{4} : if $\forall i \in \mathbb{N} . A_{i} \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_{i}=\emptyset$;
5. p_{5} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
7. p_{7} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is infinite.

3.1 Answer

1. (*) is sufficient. $(*) \Rightarrow \forall k \in \mathbb{N}\left(\forall x\left(x \in A_{k+1} \Rightarrow\left(x \in A_{k}\right)\right) \Rightarrow \forall x \in A_{k}(x \in\right.$ $\left.A_{k-1} \wedge x \in A_{k-2} \wedge \ldots \wedge x \in A_{0}\right)$. So $\forall k \in \mathbb{N}$. $A_{k}=\bigcap_{i=0}^{k} A_{i}$.
2. (*) is sufficient. (*) $\Rightarrow \forall i \in \mathbb{N}\left(A_{i}\right.$ finite $\left.\Rightarrow\left|A_{i+1}\right| \leq\left|A_{i}\right|\right) . \quad \forall i \in$ $\mathbb{N}\left(A_{i}\right.$ finite $) \Rightarrow A_{0}$ finite. Size of the sets can only decrease or remain constant. In the first case, there will obviously be an number h such that $A_{h}=\emptyset$ and for (*) $A_{h+1} \subseteq A_{h} \Rightarrow A_{h+1}=\emptyset=A_{h}$. In the second case $\left|A_{i}\right|=\left|A_{i+1}\right| \wedge(*) \Rightarrow A_{i}=A_{i+1}$.
3. We can't conclude anything about p_{3}. Let $A_{0}=\{1,2\}, A_{1}=\{2\}, \forall i \in$ $\mathbb{N} \backslash\{0,1\}\left(A_{i}=\emptyset\right)$. (*) is satisfied but p_{3} isn't, because $\exists x \in \mathbb{N}\left(A_{i}\right.$ is finite \wedge $A_{i} \neq A_{i+1}(i=0)$. But we can also find a family such that both $(*)$ and p_{3} are satisfied, so ($*$) isn't sufficient to conclude that p_{3} does not hold. For instance, $\forall i \in \mathbb{N}\left(A_{i}=\{0\}\right)$.
4. We can't conclude anything about p_{4}. For instance, the family of sets $A_{0}=\mathbb{N}, \forall i \in \mathbb{N} \backslash\{0\}\left(A_{i}=A_{i-1} \backslash\{i\}\right)$ satisfies $(*)$ and $\forall i \in \mathbb{N} . A_{i} \neq A_{i+1}$, but $\bigcap_{i=0}^{\infty} A_{i}=\{0\}$ so p_{4} doesn't hold. But there are also families of sets that satisfies both $(*)$ and p_{4}. For instance, $A_{0}=\mathbb{N} \backslash\{0\}, \forall i \in \mathbb{N} \backslash\{0\}\left(A_{i}=\right.$ $\left.A_{i-1} \backslash\{i\}\right)$.
5. (*) isn't even necessary to prove that p_{5} holds. Given two sets A and $B,|A \cap B| \leq \min \{|A|,|B|\} \Rightarrow|A \cap B| \leq|A| \wedge|A \cap B| \leq|B| . \quad \forall i \in$ $\mathbb{N}\left(A_{i}\right.$ is finite $) \Rightarrow \exists k \in \mathbb{N}(k$ is finite $) \Rightarrow\left|\bigcap_{i=0}^{\infty} A_{i}\right| \leq\left|A_{k}\right| \Rightarrow \bigcap_{i=0}^{\infty} A_{i}$ is finite.
6. We can't conclude anything. Let $\forall i \in \mathbb{N}\left(A_{i}=\mathbb{N}\right), \forall i \in \mathbb{N}\left(A_{i+1}=A_{i}\right) \Rightarrow$ $\forall i \in \mathbb{N}\left(A_{i+1} \subseteq A_{i}\right)$ and $\bigcap_{i=0}^{\infty} A_{i}=\mathbb{N}$, so this family satisfies $(*)$ but not p_{6}. Now consider $A_{0}=\mathbb{N} \backslash\{0\}, \forall i \in \mathbb{N} \backslash\{0\}\left(A_{i}=A_{i-1} \backslash\{i\}\right)$: again $\forall i \in \mathbb{N}\left(A_{i+1} \subseteq A_{i}\right)$ but this time $\bigcap_{i=0}^{\infty} A_{i}=\emptyset$, so both $(*)$ and p_{6} are satisfied.
7. We can't conclude anything. See the families of sets at point 6.
