Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

In this exercise, $p(x)$ and $q(x)$ will be two unary properties over natural numbers, and P and Q will denote the sets $P=\{x \in \mathbb{N}: p(x)$ holds $\}$ and $Q=\{x \in \mathbb{N}$: $q(x)$ holds $\}$. If possible, for each of the cases below find two properties $p(x)$ and $q(x)$ such that $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and

1. $P \subset Q$ (strict inclusion);
2. $Q \subset P$ (strict inclusion);
3. $P \backslash Q \neq \emptyset$;
4. $Q \backslash P \neq \emptyset$.

If for some of the above cases it's impossible to find such properties, provide a brief explanation of why is it so.

1.1 Answer

1. If we define that $p(x)$ holds when x is a multiple of 4 and $q(x)$ holds when x is an even number, we have the set P that contains the multiples of 4 and the set Q that contains the even numbers. In this case we have that both $\forall x \in \mathbb{N}$. $p(x) \Rightarrow q(x)$ and $P \subset Q$ are valid.
2. In this case is impossible to find a valid definition for $p(x)$ and $q(x)$ that satisfies both $\forall x \in \mathbb{N} . p(x) \Rightarrow q(x)$ and $Q \subset P$. The reason is the following:

$$
Q \subset P \Rightarrow \exists x \in \mathbb{N} . x \in P \wedge x \notin Q \Rightarrow \exists x \in \mathbb{N} \cdot p(x) \wedge \neg q(x) \nRightarrow \forall x \in \mathbb{N} . p(x) \Rightarrow q(x)
$$

3. Starting from the definition of set-theoretic difference, $P \backslash Q \neq \emptyset \Rightarrow \exists x \in$ $\mathbb{N} . x \in P \wedge x \notin Q$. For this reason, whatever is the definition of $p(x)$ and $q(x), \forall x \in \mathbb{N} . p(x) \Rightarrow q(x)$ is not valid.
4. A valid definition for $p(x)$ and $q(x)$ for this case is the same as in case 1 because since we have $P \subset Q$ this implies $Q \backslash P \neq \emptyset$.

2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcap_{i=0}^{\infty} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N}\right\}=$ $\left\{x \mid \forall i \in \mathbb{N} x \in A_{i}\right\}$ and $\bigcap_{i=0}^{k} A_{i}=\bigcap\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cap A_{1} \cap \cdots \cap A_{k}$.

3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq A_{3} \cdots(*)
$$

For each property p_{i} shown below, state whether

- the hypothesis $(*)$ is sufficient to conclude that p_{i} holds; or
- the hypothesis (*) is sufficient to conclude that p_{i} does not hold; or
- the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{i}.

Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcap_{i=0}^{k} A_{i}$;
2. p_{2} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then there exists $j \in \mathbb{N}$ such that $A_{j}=A_{j+1}$;
3. p_{3} : for all i, if A_{i} is finite, then $A_{i}=A_{i+1}$;
4. p_{4} : if $\forall i \in \mathbb{N}$. $A_{i} \neq A_{i+1}$, then $\bigcap_{i=0}^{\infty} A_{i}=\emptyset$;
5. p_{5} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is finite;
7. $p_{7}:$ if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcap_{i=0}^{\infty} A_{i}$ is infinite.

3.1 Answer

1. The hypothesis $(*)$ is sufficient to conclude that p_{1} holds because of the definition of intersection.

$$
\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq A_{3} \cdots \supseteq A_{k} \Longrightarrow A_{k}=\bigcap_{i=0}^{k} A_{i}
$$

2. The hypothesis $(*)$ is sufficient to conclude that p_{2} holds because, since all the sets are finite and the inclusions are not strict then there exists $j \in \mathbb{N}$ such that $A_{j}=A_{j+1}$. An example should be a set A_{0} with cardinality 3 and since we have $\mathbb{N} \supseteq A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq A_{3}$ then if $A_{3} \neq \emptyset$ it means that $\exists j \in \mathbb{N} .0 \leq j \leq 3$ such that $A_{j}=A_{j+1}$.
3. The hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{3} because, even if all the sets are finite and the inclusions are not strict then it is not a rule that in this situation all the sets are equal. It may be possible that all the sets are equal, but it may be also not possible.
4. The hypothesis $(*)$ is sufficient to conclude that p_{4} holds because of the definition of intersection and since in this case all the sets are different then the intersection among them is empty.
5. The hypothesis $(*)$ is sufficient to conclude that p_{5} holds because in the worst case the intersection will be empty, so it is finite anyway.
6. The only case in which p_{6} holds is when the intersection of all sets is empty (i.e. $\bigcap_{i=0}^{\infty} A_{i}$ is finite) and this happens when all sets are different. Otherwise the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{6}.
7. Here the only case in which p_{7} holds is when all the sets are equal (the hypothesis (*) allows this) and, as consequence, the intersection of all sets is infinite. Otherwise the hypothesis ($*$) is not sufficient to conclude anything about the truth of p_{7}.
