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1 Question

In this exercise, p(z) and ¢(z) will be two unary properties over natural numbers,
and P and @ will denote the sets P = {x € N : p(x) holds} and Q = {z € N :
q(z) holds}. If possible, for each of the cases below find two properties p(x) and
q(z) such that Vz € N. p(z) = ¢(z) and

1. P C Q (strict inclusion);
2. Q C P (strict inclusion);
3. P\Q#0;
4. Q\ P #0.
If for some of the above cases it’s impossible to find such properties, provide a

brief explanation of why is it so.

1.1 Answer

Suppose p(z) = x < 5 and g(z) =1 <z < 5, s0 P = {0,1,2,3,4} and
Q = {2,3,4}.

1. P C @ is false, cardinality of P is bigger then cardinality of Q
2. @ C P is true, becouse all elements of Q are included in P
3. P\ Q # () is true, becouse 2. is true

4. Q\ P # 0 is false, cardinality of P is bigger then cardinality of Q and by
2. all elements of Q are also belong to P
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2 Preliminaries

Given an infinite sequence of sets (A;);en, we define ()2, A; = {4; | i € N} =

3 Question

Assume (A4;);en to be an infinite sequence of sets of natural numbers, satisfying
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For each property p; shown below, state whether

e the hypothesis (x) is sufficient to conclude that p; holds; or

e the hypothesis (x) is sufficient to conclude that p; does not hold; or

e the hypothesis (%) is not sufficient to conclude anything about the truth
of Di-

Justify your answers (briefly).

1.

2.

p1:

b2

p3:

P4

Pbs:

DPs:

pr:

Vk e N. A, = (N5, Ais

if Vi € N. A, is finite, then there exists j € N such that A; = A;j41;
for all 4, if A; is finite, then A; = A;yq;

if Vi e N. A; # A1, then (2 A; = 0;

if Vi € N. A, is finite, then (;—, A; is finite;

if Vi € N. A; is infinite, then (), A; is finite;

if Vi € N. A, is infinite, then (72, A; is infinite.

Answer

. It holds by induction, base case is k = 0 and Ay = Ag N N obviously true,

inductive step Ay = Ap_1 N Ag but by * we know that Axis a subset of
all previous sets including base case.

It holds. By the definition all next sets are smaller or equal to previous
one. If at least two sets are equal we’ve done, if all sets are smaller then
prevoius one and they are finite at some point we will reach some empty
set and next set will be also an empty set, so we’ve done

Nothing, choosing two equal sets it holds, choosing two not equal sets it
doesn’t holds



. It holds. By the definition all next sets are smaller or equal to previous
one, but Vi € N. A; # A;;1means that next set can be only smaller then
previous one, so at some point we will reach an empty set.

. It holds. In case all next sets are smaller to previous one (-, A; = 0
by p4, in case all next sets are equal to previous one we will have some
common finite set as intersection.

. False. Intersection is however a smallest set from examinated sets, if all
examinated sets are infinite and contained one in other, also the smallest
set must to be infinite.

. It holds. Inverse of p6.
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