Computability Assignment Year 2012/13 - Number 7

Please keep this file anonymous: do not write your name inside this file.

 $More information about assignments at \ http://disi.unitn.it/\sim zunino/teaching/computability/assignments \ and \ http://disi.unitn.it/\sim zunino/teaching/computability/assignments \ http://disi.unitn.it/out/computability/assignments \ http://disi.unitn.it/o$

Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Prove that the following set is not λ -definable.

$$A = \{ \#M \mid M \text{ has a } \beta\text{-normal form} \}$$

(Hint: show that, if A were λ -definable, then also K_{λ} would be λ -definable, hence obtaining a contradiction.)

1.1 Answer

Assume that we can define a verifier for A, called V_A , that works in this way:

$$V_A \sqcap n = \begin{cases} T & if \ n \in A \\ F & otherwise \end{cases}$$

In particular, the program V_A takes in input a number (that is the encoding of a program) and tells if it has or not a β - normal form. A program M can be in the form $N^{\sqcap}N^{\sqcap}$ and, in this case, A contains $\#(N^{\sqcap}N^{\sqcap})$. If we use this idea we can use V_A to create a validator for K_{λ} . So, given in input a number (the encoding of a N) we check if in A exists the encoding of $N^{\sqcap}N^{\sqcap}$: if yes, then the encoding of N belongs to K_{λ} , otherwise no.

$$V_{\mathsf{K}_{\lambda}} = \lambda n. V_A(App \ n \ (Num \ n))$$

With this, K_{λ} is λ -definable but we know that this is impossible so we get a contradiction.

2 Question

Let A be a λ -definable set. Prove that

$$B = (A \cup \{b_1, \dots, b_n\}) \setminus \{c_1, \dots, c_m\}$$

is also λ -definable.

(Hint: do not reinvent the results we saw in class, just apply them.)

2.1 Answer

First, if A is λ -definable, we can assume that the verifier V_A is valid for the set A. After that we can construct the verifiers of finite sets $D = \{b_1, ..., b_n\}$ and $C = \{c_1, ..., c_m\}$ as we have done in class, so by simply doing all possible checks on the element passed:

$$\begin{split} V_D &= \lambda x. Equal \ x \ \ulcorner b_1 \urcorner \ T \ (Eq \ x \ \ulcorner b_2 \urcorner \ T \ (...(Eq \ x \ \ulcorner b_n \urcorner \ T \ F)) \\ V_C &= \lambda x. Equal \ x \ \ulcorner c_1 \urcorner \ T \ (Eq \ x \ \ulcorner c_2 \urcorner \ T \ (...(Eq \ x \ \ulcorner c_n \urcorner \ T \ F)) \end{split}$$

Now we can build a verifier for B, called V_B that defines a valid verifier

$$V_B = \lambda x.And (Or (V_A x) (V_D x)) (Not (V_C x))$$

3 Question

Let A be a **non** λ -definable set. Prove that

$$B = (A \cup \{b_1, \dots, b_n\}) \setminus \{c_1, \dots, c_m\}$$

is also **non** λ -definable.

(Hint: prove the contrapositive. That is, prove that if B were λ -definable, then also A would be such.)

3.1 Answer

We can prove that by logica implications. Take the verifiers from the previous exercise, so that V_D and V_C are valid verifiers. We know, in this case, that the definability of the set B is linked to the one of the set A, in particular we have that A is $\lambda - definable \Rightarrow B$ is $\lambda - definable$. So, this implication can be seen on the other side, in particular B is not $\lambda - definable \Rightarrow A$ is not $\lambda - definable$.

By the exercise we have that A is not λ -definable

(RZ: so far so good)

and so must be also B, because it is the only way in which this last implication is true.

(RZ: absolutely not! you are stating that from $p \implies q$ and q one can deduce p, which is just wrong! Be careful!)