Computability Assignment Year 2012/13 - Number 7

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Prove that the following set is not λ-definable.

$$
A=\{\# M \mid M \text { has a } \beta \text {-normal form }\}
$$

(Hint: show that, if A were λ-definable, then also K_{λ} would be λ-definable, hence obtaining a contradiction.)

1.1 Answer

Assume that we can define a verifier for A, called V_{A}, that works in this way:
$\left.V_{A} \llbracket n\right\urcorner= \begin{cases}T & \text { if } n \in A \\ F & \text { otherwise }\end{cases}$
In particular, the program V_{A} takes in input a number (that is the encoding of a program) and tells if it has or not a β - normal form. A program M can be in the form $N\ulcorner N\urcorner$ and, in this case, A contains \#($N\ulcorner N\urcorner)$. If we use this idea we can use V_{A} to create a validator for K_{λ}. So, given in input a number (the encoding of a N) we check if in A exists the encoding of $N\ulcorner N\urcorner$: if yes, then the encoding of N belongs to K_{λ}, otherwise no.
$V_{\mathrm{K}_{\lambda}}=\lambda n \cdot V_{A}(\operatorname{App} n($ Num $n))$
With this, K_{λ} is λ-definable but we know that this is impossible so we get a contradiction.

2 Question

Let A be a λ-definable set. Prove that

$$
B=\left(A \cup\left\{b_{1}, \ldots, b_{n}\right\}\right) \backslash\left\{c_{1}, \cdots, c_{m}\right\}
$$

is also λ-definable.
(Hint: do not reinvent the results we saw in class, just apply them.)

2.1 Answer

First, if A is λ-definable, we can assume that the verifier V_{A} is valid for the set A. After that we can construct the verifiers of finite sets $D=\left\{b_{1}, \ldots, b_{n}\right\}$ and $C=\left\{c_{1}, \ldots, c_{m}\right\}$ as we have done in class, so by simply doing all possible checks on the element passed:
$V_{D}=\lambda x$.Equal $\left.\left.x{ }^{\llbracket} b_{1}\right\urcorner T\left(E q x x^{\llbracket} b_{2}\right\urcorner T\left(\ldots\left(E q x x^{\ulcorner } b_{n}\right\urcorner T F\right)\right)$
$V_{C}=\lambda x$.Equal $\left.\left.x{ }^{\llbracket} c_{1}\right\urcorner T\left(E q x{ }^{\llbracket} c_{2}\right\urcorner T\left(\ldots\left(E q x{ }^{\llbracket} c_{n}\right\urcorner T F\right)\right)$

Now we can build a verifier for B, called V_{B} that defines a valid verifier
$V_{B}=\lambda x \cdot \operatorname{And}\left(\operatorname{Or}\left(V_{A} x\right)\left(V_{D} x\right)\right)\left(\operatorname{Not}\left(V_{C} x\right)\right)$

3 Question

Let A be a non λ-definable set. Prove that

$$
B=\left(A \cup\left\{b_{1}, \ldots, b_{n}\right\}\right) \backslash\left\{c_{1}, \cdots, c_{m}\right\}
$$

is also non λ-definable.
(Hint: prove the contrapositive. That is, prove that if B were λ-definable, then also A would be such.)

3.1 Answer

We can prove that by logica implications. Take the verifiers from the previous exercise, so that V_{D} and V_{C} are valid verifiers. We know, in this case, that the definability of the set B is linked to the one of the set A, in particular we have that A is λ-definable $\Rightarrow B$ is λ-definable. So, this implication can be seen on the other side, in particular B is not λ-definable $\Rightarrow A$ is not λ-definable.

By the exercise we have that A is not λ-definable
(RZ: so far so good)
and so must be also B, because it is the only way in which this last implication is true.
(RZ: absolutely not! you are stating that from $p \Longrightarrow q$ and q one can deduce p, which is just wrong! Be careful!)

