Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Let A, B be two sets. Prove that the properties below are equivalent.

- $A = \emptyset \lor B = \emptyset(1)$
- $A \times B = \emptyset(2)$

1.1 Answer

We prove that $(1) \Longrightarrow (2)$, then $(2) \Longrightarrow (1)$. So we have $(1) \Longleftrightarrow (2)$.

- From (1), if at least one of two sets are empty, then we couldn't find a $x \in A$ or $y \in B$ or both $x \in A$ and $y \in B$ for an ordered pair $\langle x, y \rangle$ to be existed. Hence from the definition of $A \times B$, we have (2).
- On the contrary, (2), from the definition of $A \times B$, we can't find an ordered pair $\langle \mathbf{x}, \mathbf{y} \rangle$ such that $x \in A \land y \in B$, this implicates that $\nexists x.x \in A$ or $\nexists y.y \in B$ or $\nexists x.x \in A \land \nexists y.y \in B$. Then, we have (1).

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcup_{i=0}^{\infty} A_i = \bigcup \{A_i|i\in\mathbb{N}\}$ and $\bigcup_{i=0}^k A_i = \bigcup \{A_i|i\in\mathbb{N} \land i\leq k\} = A_0 \cup A_1 \cup \cdots \cup A_k$.

3 Question

Assume $(A_i)_{i\in\mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$A_0 \subseteq A_1 \subseteq A_2 \subseteq A_3 \cdots \subseteq \mathbb{N}(*)$$

For each property p_i shown below, state whether

- the hypothesis (*) is sufficient to conclude that p_i holds; or
- the hypothesis (*) is sufficient to conclude that p_i does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. p_1 : $\forall k \in \mathbb{N}. A_k = \bigcup_{i=0}^k A_i$
- 2. p_2 : for all i, if A_i is infinite, then $A_i = A_{i+1}$
- 3. p_3 : if $\forall i \in \mathbb{N}. A_i \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$
- 4. p_4 : if $\forall i \in \mathbb{N}. A_i$ is finite, then $\bigcup_{i=0}^{\infty} A_i$ is finite
- 5. p_5 : if $\forall i \in \mathbb{N}. A_i$ is finite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite
- 6. p_6 : if $\forall i \in \mathbb{N}. A_i$ is infinite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite

3.1 Answer

- 1. From the left side of p1: $\forall k \in \mathbb{N}$, we can choose $x \in A_k$. We show that x also belongs to the right side. From $\bigcup_{i=0}^k A_i = A_o \cup A_1 \cup ... \cup A_k$ and (*), it is easy to see x also belongs to A_k , that is a subset of the right side. So (*) is sufficient to conclude that p_1 holds.
- 2. We give two examples to prove that if all the conditions are satisfied, we have $A_i \neq A_{i+1}$ and also have $A_i = A_{i+1}$.
 - Choosing $A_0 = \{1, 2, 3, ...\}, A_1 = \{0, 1, 2, 3, ...\}, A_2 = \{0, 1, 2, 3, ...\}, ...$ The example satisfies (*) and $\forall i.A_i$ is infinite. But $A_0 \neq A_1$.
 - Choosing $A_0 = \{0, 1, 2, 3, ...\}$, $A_1 = \{0, 1, 2, 3, ...\}$, $A_2 = \{0, 1, 2, 3, ...\}$, ... The example satisfies (*) and $\forall i.A_i$ is infinite. For all i, $A_i = A_{i+1}$. So the hypothesis (*) is not sufficient to conclude anything about the truth of p_2 .
- 3. From the condition $\forall i \in \mathbb{N}. A_i \neq A_{i+1}$ and (*), we do like p_2 .
 - We can choose $A_0 = \{2,3\}, A_1 = \{1,2,3\}, A_2 = \{1,2,3,4\}, A_3 = \{1,2,3,4,5\}, \dots$ We have $\bigcup_{i=0}^{\infty} A_i = \{1,2,3,\dots\} \neq \mathbb{N}$. Because the left-side set doesn't include 0.
 - We can choose $A_0 = \{0\}, A_1 = \{0, 1\}, A_2 = \{0, 1, 2\}, A_3 = \{0, 1, 2, 3\}, ...$ Then $\bigcup_{i=0}^{\infty} A_i = \{0, 1, 2, 3, ...\} = \mathbb{N}$. So (*) is not sufficient to conclude anything about the truth of p_3 .
 - 4. $\forall i \in \mathbb{N}. A_i$ is finite. There always exists $k \in \mathbb{N}$ such that $\forall i \in \mathbb{N}. |A_i| \leq k$. Then with (*), we have $|\bigcup_{i=0}^{\infty} A_i| \leq k$ and it is finite. So (*) is sufficient to conclude that p_4 holds.

- 5. This is the contrary of p_4 . So (*)is sufficient to conclude that p_5 does not hold
- 6. From $\forall i \in \mathbb{N}. A_i$ is infinite, it is easy to see $\bigcup_{i=0}^{\infty} A_i$ is infinite. So (*) is sufficient to conclude that p_6 holds. (It is not necessary to include (*) in this case)