Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Let A, B be two sets. Prove that the properties below are equivalent.

- $A=\emptyset \vee B=\emptyset(1)$
- $A \times B=\emptyset(2)$

1.1 Answer

We prove that $(1) \Longrightarrow(2)$, then $(2) \Longrightarrow(1)$. So we have $(1) \Longleftrightarrow(2)$.

- From (1), if at least one of two sets are empty, then we couldn't find a $x \in A$ or $y \in B$ or both $x \in A$ and $y \in B$ for an ordered pair $<\mathrm{x}, \mathrm{y}>$ to be existed. Hence from the definition of $A \times B$, we have (2).
- On the contrary, (2), from the definition of $A \times B$, we can't find an ordered pair $<\mathrm{x}, \mathrm{y}\rangle$ such that $x \in A \wedge y \in B$, this implicates that $\nexists x . x \in A$ or $\nexists y . y \in B$ or $\nexists x . x \in A \wedge \nexists y . y \in B$. Then, we have (1).

2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcup_{i=0}^{\infty} A_{i}=\bigcup\left\{A_{i} \mid i \in \mathbb{N}\right\}$ and $\bigcup_{i=0}^{k} A_{i}=\bigcup\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cup A_{1} \cup \cdots \cup A_{k}$.

3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq A_{3} \cdots \subseteq \mathbb{N}(*)
$$

For each property p_{i} shown below, state whether

- the hypothesis $(*)$ is sufficient to conclude that p_{i} holds; or
- the hypothesis $(*)$ is sufficient to conclude that p_{i} does not hold; or
- the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{i}.

Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcup_{i=0}^{k} A_{i}$
2. p_{2} : for all i, if A_{i} is infinite, then $A_{i}=A_{i+1}$
3. p_{3} : if $\forall i \in \mathbb{N} . A_{i} \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_{i}=\mathbb{N}$
4. p_{4} : if $\forall i \in \mathbb{N} . A_{i}$ is finite, then $\bigcup_{i=0}^{\infty} A_{i}$ is finite
5. p_{5} : if $\forall i \in \mathbb{N} . A_{i}$ is finite, then $\bigcup_{i=0}^{\infty} A_{i}$ is infinite
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcup_{i=0}^{\infty} A_{i}$ is infinite

3.1 Answer

1. From the left side of $\mathrm{p} 1: \forall k \in \mathbb{N}$, we can choose $x \in A_{k}$. We show that x also belongs to the right side. From $\bigcup_{i=0}^{k} A_{i}=A_{o} \cup A_{1} \cup \ldots \cup A_{k}$ and ($*$), it is easy to see x also belongs to A_{k}, that is a subset of the right side. So (*) is sufficient to conclude that p_{1} holds.
2. We give two examples to prove that if all the conditions are satisfied, we have $A_{i} \neq A_{i+1}$ and also have $A_{i}=A_{i+1}$.

- Choosing $A_{0}=\{1,2,3, \ldots\}, A_{1}=\{0,1,2,3, \ldots\}, A_{2}=\{0,1,2,3, \ldots\}, \ldots$ The example satisfies $(*)$ and $\forall i . A_{i}$ is infinite . But $A_{0} \neq A_{1}$.
- Choosing $A_{0}=\{0,1,2,3, \ldots\}, A_{1}=\{0,1,2,3, \ldots\}, A_{2}=\{0,1,2,3, \ldots\}, \ldots$ The example satisfies $(*)$ and $\forall i . A_{i}$ is infinite . For all $i, A_{i}=A_{i+1}$.
So the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{2}.

3. From the condition $\forall i \in \mathbb{N} . A_{i} \neq A_{i+1}$ and $(*)$, we do like p_{2}.

- We can choose $A_{0}=\{2,3\}, A_{1}=\{1,2,3\}, A_{2}=\{1,2,3,4\}, A_{3}=\{1,2,3,4,5\}, \ldots$. We have $\bigcup_{i=0}^{\infty} A_{i}=\{1,2,3, \ldots\} \neq \mathbb{N}$. Because the left-side set doesn't include 0 .
- We can choose $A_{0}=\{0\}, A_{1}=\{0,1\}, A_{2}=\{0,1,2\}, A_{3}=\{0,1,2,3\}, \ldots$ Then $\bigcup_{i=0}^{\infty} A_{i}=\{0,1,2,3, \ldots\}=\mathbb{N}$. So $(*)$ is not sufficient to conclude anything about the truth of p_{3}.

4. $\forall i \in \mathbb{N} . A_{i}$ is finite. There always exists $k \in \mathbb{N}$ such that $\forall i \in \mathbb{N} .\left|A_{i}\right| \leq k$. Then with $(*)$, we have $\left|\bigcup_{i=0}^{\infty} A_{i}\right| \leq k$ and it is finite. So $(*)$ is sufficient to conclude that p_{4} holds.
5. This is the contrary of p_{4}. So $(*)$ is sufficient to conclude that p_{5} does not hold.
6. From $\forall i \in \mathbb{N} . A_{i}$ is infinite, it is easy to see $\bigcup_{i=0}^{\infty} A_{i}$ is infinite.So (*)is sufficient to conclude that p_{6} holds.(It is not necessary to include ($*$) in this case)
