Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Let A, B be two sets. Prove that the properties below are equivalent.

- $A = \emptyset \lor B = \emptyset$
- $A \times B = \emptyset$

1.1 Answer

$$\begin{array}{l} A\times B=\emptyset \Longleftrightarrow \neg\exists (x,y).(x,y)\in A\times B \Longleftrightarrow \forall (x,y).\neg(x\in A\wedge y\in B) \Longleftrightarrow \forall (x,y).x\notin A\vee y\notin B \Longleftrightarrow \forall x.x\notin A\vee \forall y.y\notin B \Longleftrightarrow A=\emptyset\vee B=\emptyset \end{array}$$

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcup_{i=0}^{\infty}A_i=\bigcup\{A_i\mid i\in\mathbb{N}\}$ and $\bigcup_{i=0}^kA_i=\bigcup\{A_i\mid i\in\mathbb{N}\ \land\ i\leq k\}=A_0\cup A_1\cup\cdots\cup A_k$.

3 Question

Assume $(A_i)_{i\in\mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$A_0 \subset A_1 \subset A_2 \subset A_3 \cdots \subset \mathbb{N} \ (*)$$

For each property p_i shown below, state whether

- the hypothesis (*) is sufficient to conclude that p_i holds; or
- the hypothesis (*) is sufficient to conclude that p_i does not hold; or

• the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. $p_1: \forall k \in \mathbb{N}. A_k = \bigcup_{i=0}^k A_i$
- 2. p_2 : for all i, if A_i is infinite, then $A_i = A_{i+1}$
- 3. p_3 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$
- 4. p_4 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is finite
- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite

3.1 Answer

Answers + Intuition of demonstration.

1. (*) is sufficient for property p_1 to hold.

Since A_k belongs to the union, it is simple to see that each one of its element will be in the union, therefore $\forall k \in \mathbb{N}$. $A_k \subseteq \bigcup_{i=0}^k A_i$. The equality relation requires us to show also that $\forall k \in \mathbb{N}$. $A_k \supseteq \bigcup_{i=0}^k A_i$ but that follows by definition of Union and by the transitivity of the \subseteq relation $(\forall i \in [0, k-1]. \neg \exists x. x \in A_i \land x \notin A_k)$.

2. (*) is not sufficient to decide anything about property p_2 .

It may be false: Let's give an example, defining $A_i = \{x | (\exists j.j \in [2, i+2] \land \exists k.k \in \mathbb{N}).j \text{ is } prime \land x = j \times k\}$, we obtain a chain of infinite sets. It is easy to see that $A_i \subseteq A_{i+1}$ thus we satisfy property (*), and yet we will have INFINITELY OFTEN that $A_i \neq A_{i+1}$, since primes are infinite and uniformly distributed over \mathbb{N} . (RZ: OK, the "infinitely often" part was more general than was strictly necessary for a counterexample)

It may be true: pick $A_0 = \mathbb{N}$, then $A_0 = A_1 = A_2 = ...$, since all sets are subsets of \mathbb{N} , but we can not add any new element.

3. (*) is not sufficient to decide anything about property p_3 .

It may be false: Let's define $A_i = \{x | x | s even \land x \leq 2i\}$. Both the properties $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$ and (*) hold, but $\bigcup_{i=0}^{\infty} A_i$ is just the set of the even numbers, not equal to \mathbb{N} .

It may be true: the obvious example comes by construction of $\mathbb N$ itself and the $\leq\! \mathrm{relation}.$

4. (*) is not sufficient to decide anything about property p_4 .

It may be false: see the "may be false" case in the previous answer.

It may be true: see the "may be false" case in the next answer.

5. (*) is not sufficient to decide anything about property p_5 .

It may be false: We may easily construct a chain of finite sets such that there exists an index k for which A_k is finite and is a FIXED POINT, which means that $A_i = A_{i+1} \forall i.i \in \mathbb{N} \land i \geq k$.

It may be true: We may easily construct a chain of finite sets for which we happen to have INFINITELY OFTEN an index k such that $|A_k| > |A_{k-1}|$ $(A_k \supset A_{k-1})$, which would be sufficient to show that the property holds. [i.e. A_i is the set of prime numbers less than or equal to index i]

6. (*) is sufficient for property p_6 to hold. Obviously true, Q.E.D.

Viger