Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Let A, B be two sets. Prove that the properties below are equivalent.

- $A=\emptyset \vee B=\emptyset$
- $A \times B=\emptyset$

1.1 Answer

$A \times B=\emptyset \Longleftrightarrow \neg \exists(x, y) \cdot(x, y) \in A \times B \Longleftrightarrow \forall(x, y) \cdot \neg(x \in A \wedge y \in B) \Longleftrightarrow$ $\forall(x, y) \cdot x \notin A \vee y \notin B \Longleftrightarrow \forall x . x \notin A \vee \forall y . y \notin B \Longleftrightarrow A=\emptyset \vee B=\emptyset$

2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcup_{i=0}^{\infty} A_{i}=\bigcup\left\{A_{i} \mid i \in \mathbb{N}\right\}$ and $\bigcup_{i=0}^{k} A_{i}=\bigcup\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cup A_{1} \cup \cdots \cup A_{k}$.

3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq A_{3} \cdots \subseteq \mathbb{N}(*)
$$

For each property p_{i} shown below, state whether

- the hypothesis $(*)$ is sufficient to conclude that p_{i} holds; or
- the hypothesis $(*)$ is sufficient to conclude that p_{i} does not hold; or
- the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{i}.

Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcup_{i=0}^{k} A_{i}$
2. p_{2} : for all i, if A_{i} is infinite, then $A_{i}=A_{i+1}$
3. p_{3} : if $\forall i \in \mathbb{N}$. $A_{i} \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_{i}=\mathbb{N}$
4. p_{4} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then $\bigcup_{i=0}^{\infty} A_{i}$ is finite
5. p_{5} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then $\bigcup_{i=0}^{\infty} A_{i}$ is infinite
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcup_{i=0}^{\infty} A_{i}$ is infinite

3.1 Answer

Answers + intuition of demonstration.

1. (*) is sufficient for property p_{1} to hold.

Since A_{k} belongs to the union, it is simple to see that each one of its element will be in the union, therefore $\forall k \in \mathbb{N}$. $A_{k} \subseteq \bigcup_{i=0}^{k} A_{i}$. The equality relation requires us to show also that $\forall k \in \mathbb{N} . A_{k} \supseteq \bigcup_{i=0}^{k} A_{i}$ but that follows by definition of Union and by the transitivity of the \subseteq relation $\left(\forall i \in[0, k-1] . \neg \exists x . x \in A_{i} \wedge x \notin\right.$ A_{k}).
2. $\left(^{*}\right)$ is not sufficient to decide anything about property p_{2}.

It may be false: Let's give an example, defining $A_{i}=\{x \mid(\exists j \cdot j \in[2, i+2] \wedge$ $\exists k . k \in \mathbb{N}) . j$ is prime $\wedge x=j \times k\}$, we obtain a chain of infinite sets. It is easy to see that $A_{i} \subseteq A_{i+1}$ thus we satisfy property $\left(^{*}\right)$, and yet we will have INFINITELY OFTEN that $A_{i} \neq A_{i+1}$, since primes are infinite and uniformly distributed over \mathbb{N}. (RZ: OK, the "infinitely often" part was more general than was strictly necessary for a counterexample)

It may be true: pick $A_{0}=\mathbb{N}$, then $A_{0}=A_{1}=A_{2}=\ldots$, since all sets are subsets of \mathbb{N}, but we can not add any new element.

3 . $\left(^{*}\right)$ is not sufficient to decide anything about property p_{3}.
It may be false: Let's define $A_{i}=\{x \mid$ xis even $\wedge x \leq 2 i\}$. Both the properties $\forall i \in \mathbb{N} . A_{i} \neq A_{i+1}$ and $\left(^{*}\right)$ hold, but $\bigcup_{i=0}^{\infty} A_{i}$ is just the set of the even numbers, not equal to \mathbb{N}.

It may be true: the obvious example comes by construction of \mathbb{N} itself and the \leq relation.
4. $\left(^{*}\right)$ is not sufficient to decide anything about property p_{4}.

It may be false: see the "may be false" case in the previous answer.
It may be true: see the "may be false" case in the next answer.
5 . $\left(^{*}\right)$ is not sufficient to decide anything about property p_{5}.
It may be false: We may easily construct a chain of finite sets such that there exists an index k for which A_{k} is finite and is a FIXED POINT, which means that $A_{i}=A_{i+1} \forall i . i \in \mathbb{N} \wedge i \geq k$.

It may be true: We may easily construct a chain of finite sets for which we happen to have infinitely often an index k such that $\left|A_{k}\right|>\left|A_{k-1}\right|$ $\left(A_{k} \supset A_{k-1}\right)$, which would be sufficient to show that the property holds. [i.e. A_{i} is the set of prime numbers less than or equal to index i]
6. $\left(^{*}\right)$ is sufficient for property p_{6} to hold.

Obviously true, Q.E.D.
Viger

