# Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

## 1 Question

Let A, B be two sets. Prove that the properties below are equivalent.

- $A = \emptyset \lor B = \emptyset$
- $\bullet \ \ A\times B=\emptyset$

#### 1.1 Answer

Start relating the two properties.

$$A = \emptyset \lor B = \emptyset \iff A \times B = \emptyset$$

Then I expand the Cartesian Product.

$$A = \emptyset \lor B = \emptyset \Longleftrightarrow \{\langle a, b \rangle \mid a \in A \land b \in B\} = \emptyset$$

Now I rewrite the first part using the cardinality.

$$|A| = 0 \lor |B| = 0 \Longleftrightarrow \{\langle a, b \rangle \mid a \in A \land b \in B\} = \emptyset$$

Now the Cartesian Product  $(A \times B)$  will be empty since I cannot have any pair because I cannot find an  $a \in A$  (or  $b \in B$ ) since A (or B) is empty.

RZ: the last line proves only  $\implies$ , right?

### 2 Preliminaries

Given an infinite sequence of sets  $(A_i)_{i\in\mathbb{N}}$ , we define  $\bigcup_{i=0}^{\infty}A_i=\bigcup\{A_i\mid i\in\mathbb{N}\}$  and  $\bigcup_{i=0}^kA_i=\bigcup\{A_i\mid i\in\mathbb{N}\ \land\ i\leq k\}=A_0\cup A_1\cup\cdots\cup A_k$ .

# 3 Question

Assume  $(A_i)_{i\in\mathbb{N}}$  to be an infinite sequence of sets of natural numbers, satisfying

$$A_0 \subseteq A_1 \subseteq A_2 \subseteq A_3 \cdots \subseteq \mathbb{N} \ (*)$$

For each property  $p_i$  shown below, state whether

- the hypothesis (\*) is sufficient to conclude that  $p_i$  holds; or
- the hypothesis (\*) is sufficient to conclude that  $p_i$  does not hold; or
- the hypothesis (\*) is not sufficient to conclude anything about the truth of  $p_i$ .

Justify your answers (briefly).

- 1.  $p_1: \forall k \in \mathbb{N}. A_k = \bigcup_{i=0}^k A_i$
- 2.  $p_2$ : for all i, if  $A_i$  is infinite, then  $A_i = A_{i+1}$
- 3.  $p_3$ : if  $\forall i \in \mathbb{N}$ .  $A_i \neq A_{i+1}$ , then  $\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$
- 4.  $p_4$ : if  $\forall i \in \mathbb{N}$ .  $A_i$  is finite, then  $\bigcup_{i=0}^{\infty} A_i$  is finite
- 5.  $p_5$ : if  $\forall i \in \mathbb{N}$ .  $A_i$  is finite, then  $\bigcup_{i=0}^{\infty} A_i$  is infinite
- 6.  $p_6$ : if  $\forall i \in \mathbb{N}$ .  $A_i$  is infinite, then  $\bigcup_{i=0}^{\infty} A_i$  is infinite

#### 3.1 Answer

- 1.  $p_1$ :  $\forall k \in \mathbb{N}$ .  $A_k = \bigcup_{i=0}^k A_i$ The hypothesis (\*) is sufficient to conlcude that  $p_1$  holds. This is infer by the definition of the hypothesis itself (\*), since  $A_k$  already contains all the sets  $A_i$ ,  $i \leq k$ , then the union does not add any new elements to  $A_k$ .
- p<sub>2</sub>: for all i, if A<sub>i</sub> is infinite, then A<sub>i</sub> = A<sub>i+1</sub>
   The hypothesis (\*) is not sufficient to conloude anything about the thruth of p<sub>2</sub>.
   There exists only one case (RZ: actually more cases are possible) in which the property is true, which is when all the sets A<sub>i</sub> = N. I can also make the property false, if we consider A<sub>i</sub> = N \ {0} and A<sub>i+1</sub> = N, the two sets are both infinite but they are not equal. Since I don't know what is contained in the sets I cannot conloude anything about the property p<sub>2</sub>.
- 3.  $p_3$ : if  $\forall i \in \mathbb{N}$ .  $A_i \neq A_{i+1}$ , then  $\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$ The hypothesis (\*) is not sufficient to conlcude anything about the thruth of  $p_3$ .

  There exists only one case in which I get the  $\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$  with  $\forall i \in \mathbb{N}$ .  $A_i \neq A_{i+1}$ , and is the case when all the set  $A_i = \{a \in \mathbb{N} \mid a \leq i\}$  (RZ: more cases are possible). I can also make the property false, if we consider  $A_i = \{2 * a \in \mathbb{N} \mid a \leq i\}$  we mantain the condition that  $\forall i \in \mathbb{N}$ .  $A_i \neq A_{i+1}$ ,

- but the  $\bigcup_{i=0}^{\infty} A_i \neq \mathbb{N}$  (because the union of the  $A_i$  contains only the even number). Since I don't know what is contained in the sets I cannot conclude anything about the property  $p_3$ .
- 4.  $p_4$ : if  $\forall i \in \mathbb{N}$ .  $A_i$  is finite, then  $\bigcup_{i=0}^{\infty} A_i$  is finite

  The hypothesis (\*) is sufficient to conclude that  $p_4$  holds. (RZ: no)

  I know that  $\forall i \in \mathbb{N}$ .  $|A_i| < \infty$ , so, by contraddiction, if the  $|\bigcup_{i=0}^{\infty} A_i| = \infty$  this would means (no) that at least one  $|A_i| = \infty$  which contradicts the first condition of the property.
- 5.  $p_5$ : if  $\forall i \in \mathbb{N}$ .  $A_i$  is finite, then  $\bigcup_{i=0}^{\infty} A_i$  is infinite

  The hypothesis (\*) is sufficient to conclude that  $p_5$  does not holds. (no)

  This can be proved using the proof gives in the point 4.
- 6.  $p_6$ : if  $\forall i \in \mathbb{N}$ .  $A_i$  is infinite, then  $\bigcup_{i=0}^{\infty} A_i$  is infinite

  The hypothesis (\*) is sufficient to conclude that  $p_6$  holds.

  I know that  $\forall i \in \mathbb{N}$ .  $|A_i| = \infty$ , so I'll surely got that the  $|\bigcup_{i=0}^{\infty} A_i| = \infty$  because I need just one set  $|A_i| = \infty$  to make the property true, as shown in the point 4.