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ABSTRACT

Language models (LMs) are one of the main knowledge
sources used by automatic speech recognition (ASR) and
Spoken Language Understanding (SLU) systems. In ASR
systems they are optimized to decode words from speech for
a transcription task. In SLU systems they are optimized to
map words into concept constructs or interpretation repre-
sentations. Performance optimization is generally designed
independently for ASR and SLU models in terms of word
accuracy and concept accuracy respectively. However, the
best word accuracy performance does not always yield the
best understanding performance. In this paper we investi-
gate how LMs originally trained to maximize word accuracy
can be parametrized to account for speech understanding con-
straints and maximize concept accuracy. Incremental reduc-
tion in concept error rate is observed when a LM is trained
on word-to-concept mappings. We show how to optimize the
joint transcription and understanding task performance inthe
lexical-semantic relation space.
Index Terms: Spoken Language Understanding, Automatic
Speech Recognition, Language Modeling, Recurrent Neural
Networks

1. INTRODUCTION

Language models (LMs) in spoken language systems are used
to predict the probability of a word sequence for a target lan-
guage. Automatic speech recognition (ASR) systems use this
information, along with acoustic models, to lower word er-
ror rate (WER). Spoken Language Understanding (SLU) sys-
tems however, map each word to its related concepts and pro-
vide, in general, a one-to-many word-concept segmentation.
To optimize these systems for understanding, language mod-
els must be trained by considering the word-to-concept align-
ment constraints [1].

In this paper we address the training of joint optimiza-
tion of LMs for ASR and SLU tasks and provide an auto-
matic procedure for training the joint model and selecting its
best parametrization. The baseline mathematical model we
have selected is the Neural Networks (NNs) which naturally
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fits this joint modeling problem. Neural network language
models have several advantages over the standard back-off
n-gram language models. A NN projects word representa-
tions onto a continuous space, which yields to better smooth-
ing of probability distributions. Therefore, NNs make better
generalizations for unseen n-grams [2]. The NNs first ap-
plied to language modeling in [3], which reported improve-
ments in perplexity. In particular in this work we use Re-
current neural networks (RNNs) which are a special instance
of NNs with recurrent connections to model a short-time
memory. RNNs have been used for training ASR language
models in [4], where significant reductions in perplexity and
WER are reported for ASR. Recently ASR-SLU joint models
have been used for cache language modeling [5], however no
parametrization of the joint model has been provided and no
optimization provided.

This paper presents the training algorithm for joint ASR-
SLU LMs that use lexical and semantic constraints and their
optimization. The LMs that are used are constructed by us-
ing class-based RNNs. By performing re-scoring experiments
over ASR output 100-best lists, we have shown that a spoken
language system can be optimized either for a transcriptionor
an understanding task by considering different constraints. In
the rest of the paper we present the LUNA spoken language
corpus we have evaluated our algorithms on, the architecture
and training of the RNN and the experimental setup and re-
sults.

2. THE SPOKEN LANGUAGE CORPUS

We have used the Human-Machine (HM) part of the LUNA
Italian conversational corpus [6] for the experiments. The
LUNA corpus is collected by a customer care and technical
support center for software and hardware. The HM part is
collected with a Wizard of Oz approach. The corpus is split
into training, development, and test sets, which includes 3171,
387, and 634 utterances respectively. The training set contains
30472 word and 14683 concept tokens, the development set
contains 3765 word and 1818 concept tokens, and the test set
contains 6436 word and 3057 concept tokens. Also the train-
ing set contains 2399 distinct words, 44 distinct concepts,and
3638 distinct word-concept pair tokens.



Fig. 1. RNN structure. The input layer has as many nodes
as the number of distinct word-concept(wi, ci) pairs. The
output layer estimates probabilities for all the classes and
word-concept pairs. The classes are determined manually by
mapping each word-concept pair that have the same concept
label to the same class. The previous word-concept pair is
fed to the input layer using 1-of-n encoding.(wi, ci) denotes
theith word-concept pair,cli denotes its classhi denotes the
history for that pair.

For the utterance:“Buongiorno io ho un problema con la
stampante da questa mattina non riesco piu a stampare”

The corresponding semantic annotation which is de-
rived from an ontology is: “null{Buongiorno io ho} Hard-
wareProblem.type{un problema} Peripheral.type{con la
stampante} Time.relative{da questa mattina} Hardware-
Operation.negate{non riesco} null{piu} HardwareOpera-
tion.operationType{a stampare}”.

The word-concept pairs are constructed by using a one-to-
one mapping of words with their annotated concepts. For ex-
ample the first five pairs are:“buongiorno - null, io - null, ho -
null, un - HardwareProblem.type, problema - HardwareProb-
lem.type”.

3. RNN STRUCTURE

In this study, we have used RNNs to build a joint LM over
words and concepts. The purpose of this LM is to predict the
probability of word-concept pairs, which aims at improving
the understanding performance.

The RNN structure we have used is a modified ver-
sion of the class-based RNN structure given in Kom-
brink et. al. [7], which is available as a toolkit at
http://www.fit.vutbr.cz/∼imikolov/rnnlm/. The toolkit auto-
matically assigns words to classes with respect to the frequen-
cies of the words. We have modified the toolkit to handle
manual clustering of language model units (word or word-
concept pairs), i.e. we can map a language model unit to a

designated class. In addition, the LMs are constructed over
word-concept pairs, rather than only over words. In our joint
LMs we have put the word-concept pairs that have the same
concepts in the same class. Therefore, word-concept pairs
which are semantically related, i.e. that have the same con-
cept label, are mapped to the same class. The input layer has
a node for each word-concept pair(wi, ci) available. Each
word-concept pair is fed into the network using 1-of-n encod-
ing. The LM probabilities at the output layer is factorized
into class probabilities given the history and class member-
ship probabilities as in Equation 1, where(wi, ci) denotes the
ith word-concept pair,hi denotes the history for theith pair,
cli denotes theith class, which is the class that(wi, ci), the
ith word-concept pair, is assigned to.

P ((wi, ci)|hi) = P (cli|hi)P ((wi, ci)|cli, hi) (1)

The training of the RNN is done using back-propagation
through time (BPTT), in which the error is propagated
through recurrent connections up to a certain previous time
step. As given in [7], in this way it is guaranteed that the
RNN learns the history. When calculating the activations of
the layers, the input layer and the recurrent layer is directly
fed to the hidden layer. The activation of the hidden layer is
computed using the sigmoid function, and the output proba-
bilities are computed using the softmax function to guarantee
a valid probability distribution. The structure of RNN is given
in Figure 1.

4. EXPERIMENTAL SETUP

We have used an ASR system to generate 100-best lists for the
LUNA corpus. This system uses acoustic models that were
adapted to the corpus. It uses a conventional word based tri-
gram LM with Kneser-Ney smoothing. It performs finite state
transducer (FST) decoding.

For SLU we have trained a stochastic finite state trans-
ducer (SFST) based model that is described in [8]. The SLU
module,λSLU , is the composition of three SFSTs. The first
one,λW , represents the sequence of words, the second one,
λw2c, maps words to concepts, and the third one,λSLM , is
a concept tri-gram LM that is represented by a SFST. There-
fore, our model can be described as:

λSLU = λW ◦ λw2c ◦ λSLM

The SLU model has a 29.6% CER on the transcription of
the test set. The model is applied to the output of ASR to get
the concepts that correspond to the hypotheses that the ASR
generates. The performance of the ASR and SLU are given in
Table 1.



Table 1. Performance of ASR. ASR uses a word based tri-
gram LM. Oracle error rates are given for the 100-best list.

WER CER

1-best 22.3% 46.3%
Oracle 15.9% 35.2%

4.1. Baseline system

The baseline system that we will compare our joint LM with
uses a word based LM. So as the baseline, we have re-scored
the 100-best list that the ASR outputs by using a class-based
RNN LM that was constructed only over the words. The num-
ber of classes were given as a parameter, and the words were
assigned to the classes with respect to their frequencies as
given in [7]. We have found out that 150 classes with 100
hidden units were performing the best for the development
set. The re-scoring was also done with linear interpolationof
the RNN LM and the same tri-gram LM that was used by the
ASR. The results are given in Table 2.

Table 2. Performance of the baseline system. The class-based
RNN LM is constructed over words. The RNN+ngram refers
to the linear interpolation of the RNN LM with the tri-gram
that is used in the ASR.

WER CER

RNN 21.5% 47.0%
RNN+ngram 21.5% 47.2%

As can be seen from the results; although we are able to
reduce WER by performing re-scoring, there is a reduction
in the understanding performance and in general SLU perfor-
mance will not be predictable as WER is perturbed.

4.2. Re-scoring by using joint language models

We have optimized our system for SLU by using semantic
components in the LM. For improving the understanding per-
formance word-concept pairs are used when constructing the
LM.

The construction of the LMs is performed by using the
reference ontology annotations in the training data. By using
these annotations word-concept pairs are extracted for each
utterance. Therefore, the LMs we have constructed are joint
LMs over word-concept pairs. We have trained a n-gram joint
LM, and several RNNs with different sizes of hidden layers.
We only report the results for the one which has the hidden
layer size of 150, which gives the lowest perplexity on the
reference word-concept pair annotation of the development
set.

The re-scoring experiments were performed over the 100-
best list that is generated by the ASR. The 100-best list is
passed through the SLU module to generate the word-concept

Fig. 2. Experimental setting. The output of ASR, is fed into
the SLU model to get the word-concept pairs for the 100-best
list. The LM probabilities for these pairs are computed using
the joint RNN and n-gram LMs.

pairs for that 100-best list. RNN LM, n-gram LM and the
linear interpolation of these models are used for re-scoring
the output of the SLU module. The setting of the experiment
can be seen in Figure 2.

The RNN has 3639 nodes in the input layer, which is
equal to the number of distinct word-concept pairs in the
training set and a special token that denotes the end of utter-
ance. The output layer consists of 45 classes; 44 for concepts
and 1 fornull concepts. In addition, it has 3639 nodes for each
word-concept pair and the end of utterance token. The size of
the hidden layer and the recurrent layer is 150. The network
was trained for 14 iterations, by using the development set
for setting the learning rate. The n-gram model was trained
also by using the word-concept pairs. It is a tri-gram model
with Kneser-Ney smoothing. The performance of 100-best
re-scoring experiments with RNN, n-gram, and their linear
interpolation is given in Table 3.

Table 3. Performance of the re-scored 100-best by using joint
LMs. RNN and n-gram were trained on word-concept pairs
from the reference transcription. RNN+n-gram refers to the
linear interpolation of the two models.

WER CER

RNN 23.0% 44.1%
n-gram 26.7% 47.3%

RNN+n-gram 25.8% 46.8%

As can be seen from the results, we have obtained an im-
provement in CER using the joint LM. The WER, on the
other hand, has increased with respect to the baseline. Al-
ternatively, the transcription performance can be improved by
reducing the concept space. Therefore, the joint LM that is
based on word-concept pairs is appropriate to optimize the
systems for understanding tasks. N-gram LM has suffered
from data sparseness and performed worse than the baseline



Fig. 3. WER and CER for different number of SLU concepts.
For each concept number we have sampled over the entire
concept space and plot the mean and the standard deviation
for 5 random concept draws.

both for CER and WER. Better generalization ability of NNs
makes them more robust to data sparseness, and makes them
suitable for joint LMs.

4.3. Parameter optimization of the joint model

To see the effect of different amount of semantic information
on the performance of ASR and SLU, we have trained RNN
LMs for different samplings of the concepts to be included
in the joint model parameters. We have selected 1, 2, 4, 8,
16, and 32 concepts from the set of concepts and map the
other concepts tonull. The concepts were grouped into 5 sets
with respect to their frequencies. It was guaranteed that the
concepts from all of these sets were selected randomly, while
favoring the most frequent ones, i.e. when 8 concepts were
selected, 2 concepts were selected from each of the most fre-
quent 3 sets; and 1 each, from the rest. This randomization
was performed for 5 times for each sampling. The mean and
standard deviation of WER and CER for each of the sam-
plings are given in Figure 3. As can be seen from the figure
as the number of concepts incorporated into the LM increases
there is a significant drop in the CER. On the other hand,
WER increases initially as small number of concepts are in-
cluded in the model and then as more concepts are added to
the model WER is slightly affected.

This shows that the best word accuracy does not necessar-
ily yields the best understanding accuracy. It has been argued
in [9] that a two pass strategy for SLU may not be the best
solution, where at the first stage the system is optimized for
word accuracy and at the next stage SLU model is applied
to the output of ASR. The authors have used a semantic LM
which aimed at improving the understanding accuracy. Their

model increased the WER significantly, while the overall un-
derstanding accuracy improved. Similarly in this study, we
have shown that a LM that uses semantic information is well
suited for understanding tasks, whereas a word based model
is preferable for transcription tasks. Also, the system maybe
tuned by using different amount of semantic information in
the LM.

4.4. Statistical significance of the results

In this study we have presented that systems can be optimized
either for a transcription or an understanding task. We have
observed that for the transcription task we have an improve-
ment on WER, whereas for the understanding task we have
an improvement on CER. To show the statistical significance
of these results we used two different methods. We have used
the bootstrap method that is given in [10] to calculate the con-
fidence intervals. We have calculatedbootstrap-tconfidence
intervals using104 bootstrap replications. The p-value is cal-
culated using the randomization method given in [11]. The
results are given in Table 4. It can be seen that the improve-
ments are statistically significant.

Table 4. WER and CER of the two systems that are optimized
for ASR and SLU. 90% confidence intervals using104 boot-
strap replications are given in brackets. Also p-values for
WER and CER of the systems are presented. The results show
that the improvements are significant.

WER CER

Best ASR 21.5%[20.2 - 22.7] 47.0%[44.2 - 49.7]
Best SLU 23.0%[21.7 - 24.4] 44.1%[41.3 - 46.7]
p-value 1.99e-4 9.99e-5

5. CONCLUSION

In this study, we have presented LMs that are built over word-
concepts pairs and aimed at increasing the understanding per-
formance while compromising for higher WER. By perform-
ing re-scoring experiments over 100-best lists, we have ob-
tained 6% relative improvement with respect to the baseline,
which is statistically significant. We have also shown that best
transcription performance does not yield the best understand-
ing performance. Spoken language systems may be tuned
either for transcription or understanding task. The lexical-
semantic relations used in the LM is very important when op-
timizing the system for a specific task. By searching over the
lexical-semantic relation space, we may control the system
with respect to its performance metric (e.g. classificationer-
ror). It has been also shown that both improvements in the
transcription and understanding tasks are statistically signifi-
cant.
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