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ABSTRACT fits this joint modeling problem. Neural network language
énodels have several advantages over the standard back-off

sources used by automatic speech recognition (ASR) angram Ianguagg models. A NN.prOJ(.aCtS word representa-
Spoken Language Understanding (SLU) systems. In ASHONS onto a continuous space, which yields to better smooth
systems they are optimized to decode words from speech 419 of pl.mbtz.ib'“% distributions. Theref(;re, #lrl]\ls ’iln’\?kef_ba:tt

a transcription task. In SLU systems they are optimized tgeneralizalions for unseen n-grams [2]. e S hirst ap-

map words into concept constructs or interpretation repreF—)“ed to language modeling in [3], which reported improve-

sentations. Performance optimization is generally design mentstln perpl)lex![ty. Il(n pslr\tllﬁular r;n ;]h|s work we lIJ.Se tRe—
independently for ASR and SLU models in terms of wordCUrrent neural networ s ( s) which are a special instance

. f NNs with recurrent connections to model a short-time
accuracy and concept accuracy respectively. However, the .
y P y resp ¥ emory. RNNs have been used for training ASR language

best word accuracy performance does not always yield th& ; o . . .
y P ys Y odels in [4], where significant reductions in perplexitydan

best understanding performance. In this paper we invest|- -
gate how LMs originally trained to maximize word accuracy ER are reported for ASR. Recently ASR-SLU joint models

can be parametrized to account for speech understanding Cd?]ave betep ut§ed f?rﬂc; ac;hg langgalgﬁ mc;)dellng [5]3 dho&/vevgr no
straints and maximize concept accuracy. Incremental redyarametrization of In€ joint modet has been provided and no

tion in concept error rate is observed when a LM is trainea()pt'm'_Zatlon provided. . . -

on word-to-cocept mappings. We show how to optimize they i WoF FCSER IS SRR 0 SO
joint transcription and understanding task performandaen T

lexical-semantic relation space. optimization. The LMs that are used are constructed by us-

Index Terms: Spoken Language Understanding, Automaticing class-based RNNs. By performing re-scoring experisient
Speech Recognition, Language Modeling, Recurrent Neur ver ASR output 100-best lists, we have shown that a spoken
Networks ' ' anguage system can be optimized either for a transcription

an understanding task by considering different conssaint
the rest of the paper we present the LUNA spoken language
1. INTRODUCTION corpus we have evaluated our algorithms on, the architectur

_ and training of the RNN and the experimental setup and re-
Language models (LMs) in spoken language systems are usgglts

to predict the probability of a word sequence for a target lan
guage. Automatic speech recognition (ASR) systems use this
information, along with acoustic models, to lower word er-

ror rate (WER). Spoken Language Understanding (SLU) >Ypve have used the Human-Machine (HM) part of the LUNA

tems however, map each word to its related concepts and PRz . .
S . ltalian conversational corpus [6] for the experiments. The
vide, in general, a one-to-many word-concept segmentation

To optimize these systems for understanding, language mocli—UNA corpus is collected by a customer care and technical

i I .~ Support center for software and hardware. The HM part is
els must be trained by considering the word-to-concephalig . ' . .
. collected with a Wizard of Oz approach. The corpus is split
ment constraints [1].

: - - .. intotraining, development, and test sets, which includg43
In this paper we address the training of joint optimiza- : L .
tion of LMs for ASR and SLU tasks and provide an auto_387, and 634 utterances respectively. The training seagomt
. 30472 word and 14683 concept tokens, the development set

matic procedu_re fgr training the J(.)mt model and_ selectisg i contains 3765 word and 1818 concept tokens, and the test set
best parametrization. The baseline mathematical model wé_ . :
have selected is the Neural Networks (NNs) which naturallyContalns 643.6 word angl 3.057 concept t0!<e_ns. Also the frain-

Ing set contains 2399 distinct words, 44 distinct concepid,

This work is partially funded by the FP7 PORTDIAL project @670 3638 distinct word-concept pair tokens.

Language models (LMs) are one of the main knowledg

2. THE SPOKEN LANGUAGE CORPUS




designated class. In addition, the LMs are constructed over

Pltw,c) | cl, h) Pl Ih) word-concept pairs, rather than only over words. In ourtjoin
T LMs we have put the word-concept pairs that have the same
| Membership Prob. | ‘gass prob_‘ Output Layer concepts in the same class. Therefore, word-concept pairs
which are semantically related, i.e. that have the same con-
\ / cept label, are mapped to the same class. The input layer has
a node for each word-concept pdiv;, c;) available. Each
word-concept pair is fed into the network using 1-of-n encod
/v \ ing. The LM probabilities at the output layer is factorized
into class probabilities given the history and class member
| Input Layer | | Recurront Layer| ship probabilities as jn Equation 1, whf{nei, ¢;) denotes t_he
ith word-concept pairh; denotes the history for thigh pair,
T cl; denotes théth class, which is the class that;, ¢;), the
w_.c.) ith word-concept pair, is assigned to.

Fig. 1. RNN structure. The input layer has as many nodes

as the number of distinct word-concefat;, ¢;) pairs. The P((wi, i) ki) = P(cli|hi) P((wi, ci)lcli hi) (1)
output layer estimates probabilities for all the classesl an

word-concept pairs. The classes are determined manually by The training of the RNN is done using back-propagation
mapping each word-concept pair that have the same conceptirough time (BPTT), in which the error is propagated
label to the same class. The previous word-concept pair ishrough recurrent connections up to a certain previous time
fed to the input layer using 1-of-n encodin@v;, ¢;) denotes  step. As given in [7], in this way it is guaranteed that the
theith word-concept pairgl; denotes its clask; denotes the RNN learns the history. When calculating the activations of
history for that pair. the layers, the input layer and the recurrent layer is direct
fed to the hidden layer. The activation of the hidden layer is
computed using the sigmoid function, and the output proba-
bilities are computed using the softmax function to guarant

a valid probability distribution. The structure of RNN isrgh

in Figure 1.

For the utteranceé'Buongiorno io ho un problema con la
stampante da questa mattina non riesco piu a stampare”

The corresponding semantic annotation which is de
rived from an ontology is: fiull{Buongiorno io hg Hard-
wareProblem.type{un problema Peripheral.type{con la
stampantg Time.relative{da questa mattirjaHardware- 4. EXPERIMENTAL SETUP
Operation.negatg non riescg null{piu} HardwareOpera-

tion.operationType{a stamparg. We have used an ASR system to generate 100-best lists for the

The word-con irs ar nstr in ne-tg- . ;
ewo d-concept pairs are co structed by using a one t(?_UNA corpus. This system uses acoustic models that were
one mapping of words with their annotated concepts. For ex=

e . . : adapted to the corpus. It uses a conventional word based tri-
ample the firstfive pairs arébuongiorno - null, io - null, ho -~ o '\ ik Kneser-Ney smoothing. It performs finite state
null, un - HardwareProblem.type, problema - HardwareProb- Y Y g9-1tp
lem.type” transducer (FST) decoding.

For SLU we have trained a stochastic finite state trans-
ducer (SFST) based model that is described in [8]. The SLU
3. RNN STRUCTURE module,Asru, is the composition of three SFSTs. The first

n thi q h 4 RNN build a ioint LM one, \y, represents the sequence of words, the second one,
n this study, we have use S to build a joint over Aw2e, MAPSs words to concepts, and the third okgg s, is

words and concepts. The purpose of this LM is to predict thg71 concept tri-gram LM that is represented by a SFST. There-
probability of word-concept pairs, which aims at improving fore. our model can be described as:

the understanding performance.
The RNN structure we have used is a modified ver-

sion of the class-based RNN structure given in Kom- ASLU = AW © Aw2c © AsLm
brink et. al. [7], which is available as a toolkit at
http://www.fit.vutbr.cz&imikolov/rnnim/. The toolkit auto- The SLU model has a 29.6% CER on the transcription of

matically assigns words to classes with respect to the &éequ the test set. The model is applied to the output of ASR to get

cies of the words. We have modified the toolkit to handlethe concepts that correspond to the hypotheses that the ASR
manual clustering of language model units (word or word-generates. The performance of the ASR and SLU are given in

concept pairs), i.e. we can map a language model unit to @ble 1.



. 100 best
Table 1. Performance of ASR. ASR uses a word based tri-

gram LM. Oracle error rates are given for the 100-best list. ——

list with
— weR[cer]
1-best | 22.3% | 46.3% concept

Oracle| 15.9% | 35.2% pais

N-gram LM

Re-scored 100 best list

4.1. Baseline system

The baseline system that we will compare our joint LM with Re-scored 100 best list
uses a word based LM. So as the baseline, we have re-scored

the 100-best list that the ASR outputs by using a class—basq:qg_ 2. Experimental setting. The output of ASR, is fed into
RNN LM that was constructed only over the words. The numthe SLU model to get the word-concept pairs for the 100-best

ber of classes were given as a parameter, and the words Wefg. The LM probabilities for these pairs are computed gsin
assigned to the classes with respect to their frequencies &g joint RNN and n-gram LMs.

given in [7]. We have found out that 150 classes with 100

hidden units were performing the best for the development

set. The re-scoring was also done with linear interpoladion pairs for that 100-best list. RNN LM, n-gram LM and the

the RNN LM and the same tri-gram LM that was used by thdinear interpolation of these models are used for re-sgorin

ASR. The results are given in Table 2. the output of the SLU module. The setting of the experiment
can be seen in Figure 2.

Table 2. Performance of the baseline system. The class-based '€ RNN has 3639 nodes in the input layer, which is

RNN LM is constructed over words. The RNN+ngram refer€du@l to the number of distinct word-concept pairs in the
to the linear interpolation of the RNN LM with the tri-gram training set and a special token that denotes the end of utter
that is used in the ASR. ance. The output layer consists of 45 classes; 44 for coscept

and 1 fomull concepts. In addition, it has 3639 nodes for each

’ ‘ WER ‘ CER ‘ word-concept pair and the end of utterance token. The size of
RNN 21.5% | 47.0% the hidden layer and the recurrent layer is 150. The network
RNN+ngram| 21.5% | 47.2% was trained for 14 iterations, by using the development set

for setting the learning rate. The n-gram model was trained

As can be seen from the results; although we are able talso by using the word-concept pairs. It is a tri-gram model

reduce WER by performing re-scoring, there is a reductiorwith Kneser-Ney smoothing. The performance of 100-best

in the understanding performance and in general SLU perfore-scoring experiments with RNN, n-gram, and their linear
mance will not be predictable as WER is perturbed. interpolation is given in Table 3.

4.2. Re- ing by using joint | del
e-scoring by using joint fanguage modets Table 3. Performance of the re-scored 100-best by using joint

We have optimized our system for SLU by using semantic. Ms. RNN and n-gram were trained on word-concept pairs
components in the LM. For improving the understanding perfrom the reference transcription. RNN+n-gram refers to the
formance word-concept pairs are used when constructing thHmear interpolation of the two models.

LM.

The construction of the LMs is performed by using the ’ ‘ WER ‘ CER ‘
reference ontology annotations in the training data. Bpgisi RNN 23.0% | 44.1%
these annotations word-concept pairs are extracted for eac n-gram 26.7% | 47.3%
utterance. Therefore, the LMs we have constructed are joint RNN+n-gram| 25.8% | 46.8%
LMs over word-concept pairs. We have trained a n-gram joint
LM, and several RNNs with different sizes of hidden layers.  As can be seen from the results, we have obtained an im-
We only report the results for the one which has the hiddeprovement in CER using the joint LM. The WER, on the
layer size of 150, which gives the lowest perplexity on theother hand, has increased with respect to the baseline. Al-
reference word-concept pair annotation of the developmerérnatively, the transcription performance can be impadwe
set. reducing the concept space. Therefore, the joint LM that is

The re-scoring experiments were performed over the 10(based on word-concept pairs is appropriate to optimize the
best list that is generated by the ASR. The 100-best list isystems for understanding tasks. N-gram LM has suffered
passed through the SLU module to generate the word-concefpbm data sparseness and performed worse than the baseline




model increased the WER significantly, while the overall un-
derstanding accuracy improved. Similarly in this study, we

475
479

ss5] ] have shown that a LM that uses semantic information is well
€ s 1 suited for understanding tasks, whereas a word based model
8 ‘“':z: ] is preferable for transcription tasks. Also, the system &y

wash tuned by using different amount of semantic information in

4 the LM.

0 5 10 15 20 25 30 35 40 44
Number of concepts

4.4. Statistical significance of the results

In this study we have presented that systems can be optimized
either for a transcription or an understanding task. We have
observed that for the transcription task we have an improve-
: 5 5 5 ! ! ! ! ment on WER, whereas for the understanding task we have
O oo o an improvement on CER. To show the statistical significance
of these results we used two different methods. We have used

. . the bootstrap method that is given in [10] to calculate the co
Fig. 3. WER and CER for different number of SLU Conceptsfidence intervals. We have calculatedotstrap-tconfidence

For each concept number we have sampled over the ?nt_'riﬁtervals usingl0* bootstrap replications. The p-value is cal-
concept space and plot the mean and the standard dev'at'oéhlated using the randomization method given in [11]. The

for 5 random concept draws. results are given in Table 4. It can be seen that the improve-
ments are statistically significant.

both for CER and WER. Better generalization ability of NNs
makes them more robust to data sparseness, and makes tIh“ﬁf'g‘ﬂﬂe 4. WER and CER of the two systems that are optimized

WER (%)

suitable for joint LMs. for ASR and SLU. 90% confidence intervals usiog boot-
strap replications are given in brackets. Also p-values for
4.3. Parameter optimization of the joint model WER and CER of the systems are presented. The results show

To see the effect of different amount of semantic informatio that the improvements are significant.

on the performance of ASR and SLU, we have trained RNN | \ WER \ CER \
LMs for different samplings of the concepts to be included [ Best ASR| 21.5%[20.2 - 22.7 | 47.0%[44.2 - 49.7
in the joint model parameters. We have selected 1, 2, 4, 8,| Best SLU 23.0%(21.7-24.4 | 44.1%[41.3 - 46.T
16, and 32 concepts from the set of concepts and map the, p-value 1.99e-4 9.99e-5
other concepts taull. The concepts were grouped into 5 sets
with respect to their frequencies. It was guaranteed theat th
concepts from all of these sets were selected randomlyewhil
favoring the most frequent ones, i.e. when 8 concepts were 5. CONCLUSION
selected, 2 concepts were selected from each of the most fre-
guent 3 sets; and 1 each, from the rest. This randomizatioim this study, we have presented LMs that are built over word-
was performed for 5 times for each sampling. The mean andoncepts pairs and aimed at increasing the understanding pe
standard deviation of WER and CER for each of the samformance while compromising for higher WER. By perform-
plings are given in Figure 3. As can be seen from the figuréng re-scoring experiments over 100-best lists, we have ob-
as the number of concepts incorporated into the LM increasdained 6% relative improvement with respect to the basgline
there is a significant drop in the CER. On the other handwhich is statistically significant. We have also shown thesttb
WER increases initially as small number of concepts are intranscription performance does not yield the best undedsta
cluded in the model and then as more concepts are addeditay performance. Spoken language systems may be tuned
the model WER is slightly affected. either for transcription or understanding task. The ldxica
This shows that the best word accuracy does not necessaemantic relations used in the LM is very important when op-
ily yields the best understanding accuracy. It has beeredrgu timizing the system for a specific task. By searching over the
in [9] that a two pass strategy for SLU may not be the bestexical-semantic relation space, we may control the system
solution, where at the first stage the system is optimized fowith respect to its performance metric (e.g. classificaéon
word accuracy and at the next stage SLU model is applietbr). It has been also shown that both improvements in the
to the output of ASR. The authors have used a semantic LNfanscription and understanding tasks are statisticajlyifs
which aimed at improving the understanding accuracy. Theicant.
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