Learning in Graphical Models

Andrea Passerini
passerini@disi.unitn.it

Machine Learning
Parameter estimation

- We assume the structure of the model is given.
- We are given a dataset of examples $\mathcal{D} = \{x(1), \ldots, x(N)\}$
- Each example $x(i)$ is a configuration for all (complete data) or some (incomplete data) variables in the model.
- We need to estimate the parameters of the model (conditional probability distributions) from the data.
- The simplest approach consists of learning the parameters maximizing the *likelihood* of the data:

$$\theta^{\text{max}} = \arg\max_{\theta} p(\mathcal{D} | \theta) = \arg\max_{\theta} \mathcal{L}(\mathcal{D}, \theta)$$
Learning Bayesian Networks

Maximum likelihood estimation, complete data

\[p(\mathcal{D}|\theta) = \prod_{i=1}^{N} p(x(i)|\theta) \]

examples independent given \(\theta \)

\[= \prod_{i=1}^{N} \prod_{j=1}^{m} p(x_j(i)|pa_j(i), \theta) \]

factorization for BN
Learning Bayesian Networks

Maximum likelihood estimation, complete data

\[p(\mathcal{D}|\theta) = \prod_{i=1}^{N} \prod_{j=1}^{m} p(x_j(i)|\text{pa}_j(i), \theta) \]

factorization for BN

\[= \prod_{i=1}^{N} \prod_{j=1}^{m} p(x_j(i)|\text{pa}_j(i), \theta_{X_j|\text{pa}_j}) \]

disjoint CPD parameters
Maximum likelihood estimation, complete data

- The parameters of each CPD can be estimated independently:

\[
\theta_{X_j|\text{Pa}_j}^{\text{max}} = \arg\max_{\theta_{X_j|\text{Pa}_j}} \prod_{i=1}^{N} \rho(x_j(i)|\text{pa}_j(i), \theta_{X_j|\text{Pa}_j})
\]

- A discrete CPD \(P(X|U)\), can be represented as a table, with:
 - a number of rows equal to the number \(\text{Val}(X)\) of configurations for \(X\)
 - a number of columns equal to the number \(\text{Val}(U)\) of configurations for its parents \(U\)
 - each table entry \(\theta_{x|u}\) indicating the probability of a specific configuration of \(X = x\) and its parents \(U = u\)
Replacements $p(x(i)|pa(i))$ with $\theta_{x(i)|u(i)}$, the local likelihood of a single CPD becomes:

$$
\mathcal{L}(\theta_{X|Pa}, D) = \prod_{i=1}^{N} p(x(i)|pa(i), \theta_{X|Pa})
$$

$$
= \prod_{i=1}^{N} \theta_{x(i)|u(i)}
$$

$$
= \prod_{u \in Val(U)} \left[\prod_{x \in Val(X)} \theta_{u,x}^{N_{u,x}} \right]
$$

where $N_{u,x}$ is the number of times the specific configuration $X = x, U = u$ was found in the data.
Learning graphical models

Maximum likelihood estimation, complete data

- A column in the CPD table contains a multinomial distribution over values of X for a certain configuration of the parents U
- Thus each column should sum to one: $\sum_{x} \theta_{x|u} = 1$
- Parameters of different columns can be estimated independently
- For each multinomial distribution, zeroing the gradient of the maximum likelihood and considering the normalization constraint, we obtain:

$$\theta_{x|u}^{\text{max}} = \frac{N_{u,x}}{\sum_{x} N_{u,x}}$$

- The maximum likelihood parameters are simply the fraction of times in which the specific configuration was observed in the data
Adding priors

- ML estimation tends to overfit the training set
- Configuration not appearing in the training set will receive zero probability
- A common approach consists of combining ML with a prior probability on the parameters, achieving a maximum-a-posteriori estimate:

\[\theta^{\text{max}} = \arg\max_{\theta} p(D|\theta)p(\theta) \]
Dirichlet priors

- The conjugate (read natural) prior for a multinomial distribution is a Dirichlet distribution with parameters $\alpha_{x|u}$ for each possible value of x.
- The resulting maximum-a-posteriori estimate is:

$$
\theta_{x|u}^{\text{max}} = \frac{N_{u,x} + \alpha_{x|u}}{\sum_x (N_{u,x} + \alpha_{x|u})}
$$

- The prior is like having observed $\alpha_{x|u}$ imaginary samples with configuration $X = x, \mathbf{U} = \mathbf{u}$.
Incomplete data

- With incomplete data, some of the examples miss evidence on some of the variables
- Counts of occurrences of different configurations cannot be computed if not all data are observed
- The full Bayesian approach of integrating over missing variables is often intractable in practice
- We need approximate methods to deal with the problem
E-M for Bayesian nets in a nutshell

- Sufficient statistics (counts) cannot be computed (missing data)
- Fill-in missing data inferring them using current parameters (solve inference problem to get expected counts)
- Compute parameters maximizing likelihood (or posterior) of such expected counts
- Iterate the procedure to improve quality of parameters
Learning with missing data: Expectation-Maximization

Expectation-Maximization algorithm

e-step Compute the expected sufficient statistics for the complete dataset, with expectation taken wrt the joint distribution for X conditioned on the current value of θ and the known data D:

$$E_{p(x|D,\theta)}[N_{ijk}] = \sum_{l=1}^{n} p(X_i(l) = x_k, Pa_i(l) = pa_j|X_l, \theta)$$

- If $X_i(l)$ and $Pa_i(l)$ are observed for X_l, it is either zero or one
- Otherwise, run Bayesian inference to compute probabilities from observed variables
Learning with missing data: Expectation-Maximization

Expectation-Maximization algorithm

m-step compute parameters maximizing likelihood of the complete dataset D_c (using expected counts):

$$\theta^* = \arg\max_{\theta} p(D_c|\theta)$$

which for each multinomial parameter evaluates to:

$$\theta^*_ijk = \frac{\mathbb{E}_{p(x|D,\theta)}[N_{ijk}]}{\sum_{k=1}^{r_i} \mathbb{E}_{p(x|D,\theta)}[N_{ijk}]}$$

Note

ML estimation can be replaced by maximum a-posteriori (MAP) estimation giving:

$$\theta^*_ijk = \frac{\alpha_{ijk} + \mathbb{E}_{p(x|D,\theta,S)}[N_{ijk}]}{\sum_{k=1}^{r_i} \left(\alpha_{ijk} + \mathbb{E}_{p(x|D,\theta,S)}[N_{ijk}]\right)}$$
Approaches

- **constraint-based**: test conditional independencies on the data and construct a model satisfying them.

- **score-based**: assign a score to each possible structure, define a search procedure looking for the structure maximizing the score.

- **model-averaging**: assign a prior probability to each structure, and average prediction over all possible structures weighted by their probabilities (full Bayesian, intractable).
Appendix: Learning the structure

Bayesian approach

- Let S be the space of possible structures (DAGS) for the domain X.
- Let \mathcal{D} be a dataset of observations.
- Predictions for a new instance are computed marginalizing over both structures and parameters:

$$p(\mathbf{X}_{N+1}|\mathcal{D}) = \sum_{S \in S} \int_{\theta} p(\mathbf{X}_{N+1}, S, \theta|\mathcal{D}) d\theta$$

$$= \sum_{S \in S} \int_{\theta} P(\mathbf{X}_{N+1}|S, \theta, \mathcal{D}) P(S, \theta|\mathcal{D}) d\theta$$

$$= \sum_{S \in S} \int_{\theta} P(\mathbf{X}_{N+1}|S, \theta) P(\theta|S, \mathcal{D}) P(S|\mathcal{D}) d\theta$$

$$= \sum_{S \in S} P(S|\mathcal{D}) \int_{\theta} P(\mathbf{X}_{N+1}|S, \theta) P(\theta|S, \mathcal{D}) d\theta$$
Learning the structure

Problem
Averaging over all possible structures is too expensive

Model selection

Choose a best structure S^* and assume $P(S^*|D) = 1$

Approaches:

- Score-based:
 - Assign a score to each structure
 - Choose S^* to maximize the score

- Constraint-based:
 - Test conditional independencies on data
 - Choose S^* that satisfies these independencies
Score-based model selection

Structure scores

- Maximum-likelihood score:
 \[S^* = \arg\max_{S \in S} p(D|S) \]

- Maximum-a-posteriori score:
 \[S^* = \arg\max_{S \in S} p(D|S)p(S) \]
Computing $P(D|S)$

Maximum likelihood approximation

- The easiest solution is to approximate $P(D|S)$ with the maximum-likelihood score over the parameters:

$$P(D|S) \approx \max_{\theta} P(D|S, \theta)$$

- Unfortunately, this boils down to adding a connection between two variables if their empirical mutual information over the training set is non-zero (proof omitted)

- Because of noise, empirical mutual information between any two variables is almost never exactly zero \Rightarrow fully connected network
Computing $P(D|S) \equiv P_{S}(D)$: Bayesian-Dirichlet scoring

Simple case: setting

- X is a single variable with r possible realizations (r-faced die)
- S is a single node
- Probability distribution is a multinomial with Dirichlet priors $\alpha_1, \ldots, \alpha_r$.
- D is a sequence of N realizations (die tosses)
Computing $P_S(\mathcal{D})$: Bayesian-Dirichlet scoring

Simple case: approach

- Sort \mathcal{D} according to outcome:

 $$\mathcal{D} = \{x^1, x^1, \ldots, x^1, x^2, \ldots, x^2, \ldots, x^r, \ldots, x^r\}$$

- Its probability can be decomposed as:

 $$P_S(\mathcal{D}) = \prod_{t=1}^{N} P_S(X(t)|X(t-1), \ldots, X(1))_{\mathcal{D}(t-1)}$$

- The prediction for a new event given the past is:

 $$P_S(X(t+1) = x^k|\mathcal{D}(t)) = E_{P_S(\theta|\mathcal{D}(t))}[\theta_k] = \frac{\alpha_k + N_k(t)}{\alpha + t}$$

 where $N_k(t)$ is the number of times we have $X = x^k$ in the first t examples in \mathcal{D}
Computing $P_S(D)$: Bayesian-Dirichlet scoring

Simple case: approach

$$P_S(D) = \frac{\alpha_1}{\alpha} \frac{\alpha_1 + 1}{\alpha + 1} \cdots \frac{\alpha_1 + N_1 - 1}{\alpha + N_1 - 1} \cdots \frac{\alpha_2}{\alpha + N_1} \frac{\alpha_2 + 1}{\alpha + N_1 + 1} \cdots \frac{\alpha_2 + N_2 - 1}{\alpha + N_1 + N_2 - 1} \cdots \frac{\alpha_r}{\alpha + N_1 + \cdots + N_{r-1}} \frac{\alpha_r + 1}{\alpha + N_1 + \cdots + N_{r-1} + N_r - 1} \cdots \frac{\alpha_r + N_r - 1}{\alpha + N - 1}$$

$$= \frac{\Gamma(\alpha)}{\Gamma(\alpha + N)} \prod_{k=1}^{r} \frac{\Gamma(\alpha_k + N_k)}{\alpha_k}$$

where we used the Gamma function ($\Gamma(x + 1) = x\Gamma(x)$):

$$\alpha(1 + \alpha) \cdots (N - 1 + \alpha) = \frac{\Gamma(N + \alpha)}{\Gamma(\alpha)}$$
Computing \(P_S(\mathcal{D}) \): Bayesian-Dirichlet scoring

General case

\[
P_S(\mathcal{D}) = \prod_i \prod_j \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} + N_{ij})} \prod_{k=1}^{r} \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\alpha_{ijk}}
\]

where

- \(i \in \{1, \ldots, n\} \) ranges over nodes in the network
- \(j \in \{1, q_i\} \) ranges over configurations of \(X_i \)'s parents
- \(k \in \{1, r_i\} \) ranges over states of \(X_i \)

Note

The score is **decomposable**: it is the product of independent scores associated with the distribution of each node in the net.
Search strategy

Approach

- Discrete search problem: NP-hard for nets whose nodes have at most $k > 1$ parents.
- Heuristic search strategies employed:
 - Search space: set of DAGs
 - Operators: add, remove, reverse one arc
 - Initial structure: e.g. random, fully disconnected, ...
 - Strategies: hill climbing, best first, simulated annealing

Note

Decomposable scores allow to recompute local scores only for a single move