
1

Technical report DIT-02-0093, Università di Trento, November 2002

A Location-Dependent Recommender System for
the Web

Mauro Brunato Roberto Battiti Alessandro Villani Andrea Delai
DIT — Dipartimento di Informatica e Telecomunicazioni

Università di Trento — via Sommarive 14, I-38050 Povo (TN) — ITALY
brunato|battiti|avillani|delai@dit.unitn.it

Abstract— A relevant piece of information in many context-
aware applications for wireless and mobile users is the user’s cur-
rent location. Knowledge of the position, when combined with the
user preferences, permits efficient service (or product) location,
location-dependent alerting, and location-aware recommendation
systems.

We propose a recommendation system that is based on
a standard web browser and where models determining the
relevance of a given URL in a given region are derived in
an automated and adaptive way through the collaboration of
users of the system. With respect to existing location-dependent
recommendation systems, the advantage of our proposal lies in
the reduced effort required for system development and in the
increased independence of the recommendation from the services
(or products) owners. After an initial tuning phase, a specific URL
will be recommended to a user in a given location in a way that
considers where and how often it was accessed by the previous
users.

In detail, a new middleware layer, the location broker, collects
a historic database where user positions and links used in the
past are analyzed to develop models relating resources to their
spatial usage pattern and to calculate a preference metric when
the current user is asking for recommendations.

The focus of this work is on scalability issues. When the system
is used in a wide area (possibly covering a sizable fraction of
the entire web), the size of the database and the complexity of
the models increase very rapidly. In an ubiquitous computing
scenario where a multitude of wirelessly interconnected system
surround a mobile user, the number of resources in an explored
region may easily grow to contain thousands or millions of items.
We describe a suitable data structure that permits scalability
and analyze the empirical computational complexity both on a
simulated scenario and in a real-world context in our province1.

Index Terms— Mobile devices, Context-aware computing, Rec-
ommender systems, Collaborative filtering, Spatial databases

I. INTRODUCTION

There is a growing consensus that the new tools for sup-
porting mobile and wireless applications have to be developed
in a user-centric way. Unless the cognitive burden required to
receive the information that is appropriate in a given context
is substantially reduced, the average user is not willing to

1This research is partially supported by the Province of Trento (Italy) in
the framework of the WILMA (Wireless Internet and Location Management)
project (http://www.wilmaproject.org/).

spend time in tuning the system, selecting information from a
small output device and entering large amounts of data through
cumbersome interfaces. Adaptive context-aware system need
to develop models of the relevance of different resources (e.g.
URLs) for a specific user, and to filter the information so
that only a small selection of relevant and limited resources is
presented.

The location is of course a critical component of the context
for mobile users. The introduction of small pocket- and tablet-
sized computers, and the contemporary blossoming of wireless
networking solutions, from IEEE802.11b (a.k.a. Wi-Fi) to
3G cellular systems, is forcing a rapid change of paradigm
in the area of service provisioning. In particular, the tradi-
tional notions that the user’s location is fixed and relatively
unimportant, and that the user can afford a lot of key-typing
in order to access useful information, is not true anymore.
A recommendation system, taking into account location and
other data, and providing a few links that are considered most
interesting to the user in a particular context, would provide an
agile and flexible environment for a mobile user. This system
can be an ideal complement to methods providing dynamic
customization of content for wireless clients [1], once the
relevant links are selected.

Location-aware mobile commerce systems are considered
for example in [2], location-aware shopping assistance is
described in [3]. A mapping of physical locations to Inter-
net URIs is proposed in HP’s CoolTown project2. Relevant
locations are equipped with short-range infrared emitters that
periodically broadcast their related URI to listening mobile
devices. The virtual extension of this project, Websigns [4],
works by interfacing to a number of positioning systems
without actually installing the beacons: the user’s position,
detected via GPS, is sent to a central server, which extracts
all items whose direction and distance fall within some item-
dependent intervals. The server sends the links to a client
program on the user’s PDA; a graphical front-end allows the
user to choose a link and open a browser window. The context
of pervasive computing in a wireless Internet framework is
also explored by our WILMA Project3 (Wireless Internet and

2http://cooltown.hp.com/
3http://www.wilmaproject.org/

2

Location Management) at the University of Trento, where the
PILGRIM location-broker and mobility-aware recommenda-
tion system has been recently proposed. This papers deals with
scalability issues to make the system available for a global use
in the Internet, where the number of resources in the system
database may easily grow to reach millions of items.

The rest of the paper is organized as follows. In Section II,
a short survey of currently available recommender systems is
presented. In Section III a model for describing the preferences
of mobile users is presented, together with an overview of
the architecture of the PILGRIM (Personal Item Locator
and General Recommendation Index Manager) system. In
Section IV the ER-tree, a spatial indexing structure tailored
for the requirements of the PILGRIM system, is introduced
and motivated. Section V is devoted to experimental evaluation
of the ER-tree structure in simulated random environments.
Finally, in Section VI conclusions are drawn.

II. RECOMMENDATION SYSTEMS

A typical recommendation system [5] answers the question:
“What are the k more interesting items for the current user?”
For this purpose, user and item profiles are scanned and
similarity techniques are employed to determine the most
relevant items.

Techniques of collaborative filtering can be introduced
where user profiles and evaluations are stored and used to
automatically build a list of links specifically tailored for
a particular user. Many recommendation systems, such as
Tapestry [6] or Fab [7], require users to express their eval-
uation of the visited item, while others can gather implicit
information. For example, the GroupLens [8] USENET news
recommendation system uses reading times as a user interest
measure. PHOAKS [9] uses data mining techniques to extract
URLs or other information pointers from USENET postings
or from bookmark collections.

A recommendation system maintains a finite list of users,
identified by unique IDs. Each user is associated to some
profile information. A list of items, for instance web links,
is also maintained along with relevant properties. The term
current user will identify the user whom the recommendation
list is being built for.

Item ranking techniques are often based on comparison
of user profiles (user-based filtering), which may include
information provided by the user (his/her work, hobbies, last
readings, and so on), or just a list of recently selected items.
The current user profile is compared with all others, and the
closest matches are used to build a plausible “top-k” item
list. User profile comparison is a time-consuming procedure,
and smart data structures need to be implemented in order to
manage a large population.

A different class of recommendation systems is based on
item comparison (item-based filtering) [10], [11], [12]: items
are scanned, and each of them is evaluated via the question:
“How relevant is this item for the user?”. The question
is answered through similarity with other items that were
selected by the same user, and similarity between two items is
in turn evaluated by considering how many users have selected

both. Item profiles, taking into account explicit user evaluation,
overall number of selections or the time of permanence of the
user in the related web page, can also be considered in ranking.
Many variants and combinations are possible between these
two classes of algorithms.

III. A LOCATION-AWARE MODEL OF USER PREFERENCES

FOR WEB SITES

The PILGRIM recommendation system [13] generates rec-
ommendation lists based on the user location and on web site
information gathered from previous usages of the same sites
by other people. For completeness we briefly summarize the
PILGRIM approach in the current section.

A location-aware recommendation system should be able to
produce a top-k items list for a given user whose location is
known with a precision ranging from a few meters to some
hundreds of meters. Position estimates can be obtained by
means of many systems, such as GPS (outdoor only, with a
precision of about 10m), active badges [14], [15] (precisions
ranging from few centimeters to room size), or by exploiting
the radio propagation properties of the wireless networking
medium [16], [17], [18] (with precisions of few meters in
the Wi-Fi case). The latter solution is of particular interest
because it does not need additional infrastructure, and the
normal networking equipment is used both for communication
and for location detection.

A mobile user is likely to handle the PDA only for the time
that is strictly needed to find an interesting link and follow
it and may not be willing to fumble with the device in order
to give an explicit evaluation of the chosen item. So, only
implicit information about the choice can be gathered:

• Was the presented item clicked or not?
• How long has the page remained on screen?
• What was the subsequent action of the user (she aban-

doned the site, or she visited also linked pages)?

In a mobile environment, however, another crucial piece of
information is the following:

• What was the user position when she clicked the link?

The purpose of the PILGRIM system is to integrate in-
formation about the current user location into traditional
recommendation systems in an adaptive way.

A. Architecture of the system

The PILGRIM system is structured as an automated learn-
ing component to develop models relating resources to their
spatial usage pattern by mining the historic database that
records past accesses to sites.

The basic building blocks of the system are shown in Fig-
ure 1. On the client side, possibly a PDA with low computing
speed, two components are active. The first is the normal off-
the-shelf Internet browser, and it is the only component that the
user sees on the screen during normal operation. The second
component, the location discovery application, is a small
process that enables the PDA to obtain positioning data and
to send them to the server; for instance, radio signal strength
from surrounding Wi-Fi access points or raw GPS data. This

3

Location

DB

Browser

Discovery
User

Tracker Recommendation

Engine

Internet

Location Broker

Mobile computer

Server

Web Proxy

(optional)

Fig. 1. Architecture of the PILGRIM system.

module is mostly transparent to the user; it will only display
a startup dialog for initialization purposes, for example to
change privacy settings. The two components are independent:
the system could take advantage from an integrated solution,
but this may not be applicable to all systems. For instance,
many lightweight browsers in use on PDAs do not allow
component technologies such as Java or ActiveX, and even
scripting languages may not be supported.

The location discovery application running on the client
sends position updates to the server-side location broker. This
is in turn composed of two components. The first, the user
tracker, is in charge of computing the location data transmitted
by the client in order to obtain a good estimate of the user
position and to track the user’s movement (due to power and
CPU limitations, it may be impractical for the PDA to compute
the precise location, and only raw data are transmitted to the
server). The second component, the recommendation engine,
is the core of the system: it maintains the access database,
containing data about what links have been followed, and from
what physical position. These data, together with the user’s
location provided by the user tracker module, are employed
to generate a list of possibly interesting links.

B. Collaborative filtering and ranking procedure

Once the database is populated with past user accesses to
items, its data can be used to build a model of user preference.
Thus, the chosen approach considerably differs from other
systems such as Websigns, where the database is updated and
maintained by hand, and is more similar to the collaborative
filtering paradigm, where the quality of recommendations
shapes up as long as users interact with the system.

The models relating resources (URLs) and usage patterns
in physical space are expressed in terms of a metric based on
inertial ellipsoids. The basic motivation is that of obtaining a
smooth metric, where the spatial distribution of interest for a
specific URL may have a preferred orientation in space.

The recommendation engine works on a set of s links, each
identified by a unique id l = 1, . . . , s. Suppose that site l
has been visited Nl times (possibly by different users), and
let the set of points P l

i = (xl
i, y

l
i), 1 ≤ i ≤ Nl, represent

the Nl physical locations where link l was clicked. A locality
measure of link l can be obtained by calculating the inertial
ellipsoid of its points. Points can be associated to a “mass”
that is related to the level of trust of the received feedback

Access to highway server

Access to restaurant site

Highway ellipsoid

Restaurant ellipsoid

Restaurant

Highway

Fig. 2. Two sample sites with different access metrics, see text for
explanation.

or to the length of time that a user spent on a web page. In
the current version, for simplicity, all points are modeled as
unit masses. The inertial ellipsoid has the following quadratic
equation:

(

x − x̄l y − ȳl

)

M−1

l

(

x − x̄l

y − ȳl

)

= 1,

where x̄l and ȳl are the coordinates of the center of mass, while
matrix Ml is the second-order moment matrix (the covariance
matrix):

x̄l =
1

Nl

Nl
∑

i=1

xl
i, ȳl =

1

Nl

Nl
∑

i=1

yl
i,

Ml =
1

Nl













Nl
∑

i=1

(xl
i − x̄l)

2

Nl
∑

i=1

(xl
i − x̄l)(y

l
i − ȳl)

Nl
∑

i=1

(xl
i − x̄l)(y

l
i − ȳl)

Nl
∑

i=1

(yl
i − ȳl)

2













.

Because the matrix is positive definite, the matrix M−1

l

defines a distance between points P = (xP , yP) and Q =
(xQ, yQ):

dl(P, Q) =
(

xP − xQ yP − yQ

)

M−1

l

(

xP − xQ

yP − yQ

)

.

Let P̄l = (x̄l, ȳl) be the center of mass for site l. The
distance dl can be used as a measure of interest of site l for a
user located at position P = (x, y). The preference for a site
l at point P is defined as:

rl(P) =
1

dl(P, P̄l)
,

so that site l is preferable to site l′ at point P if rl(P) > rl′ (P)
(preference is rl(P) = +∞ on the center of mass).

The set of preference functions (rl)1≤l≤s induces at every
point P a permutation πP = (πP

1 , . . . , πP
s) of the site IDs

having the property

∀i ∈ {1, . . . , s} rπP

i

(P) ≥ rπP

i+1
(P).

The permutation is uniquely defined modulo equalities of the
preference function; in this case, any tie-breaking rule, such
as ID order, properly defines a unique permutation:

∀i ∈ {1, . . . , s} rπP

i

(P) = rπP

i+1
(P) ⇒ πP

i < πP
i+1.

4

The advantages of the ellipsoid metric with respect to
simpler techniques can be understood by referring to Figure 2.
Consider two candidate links. The first contains informa-
tion about the status of a highway, and is mostly used by
people driving along that road. Almost all accesses to the
site have been performed along the highway. Because of the
uni-dimensionality of the road, there is a strong correlation
between the x and y coordinates of the points (the small
black squares in the figure), and the resulting ellipse, with
the solid outline, has high eccentricity. Its preference function,
rhighway(P) decreases slowly when moving from the average
access position along the highway, while it drops very rapidly
when moving outside the road. On the other hand, a restaurant
placed near the highway, but not directly accessible, has a
less eccentric region of interest (the small black circles).
The resulting ellipse, with a dashed outline, is less eccentric,
even though it still shows a preferential direction, due to the
physical visibility of the building, or to the terrain morphology.
The preference function, rrestaurant(P), decays more regularly
with distance from the center. Note that the center of the
ellipse does not coincide with the restaurant. In fact, no a
priori information is built in the system, and the geographical
relevance of a link is gradually inferred through the ellipsoid
metric: every time a user clicks a link, the recommendation
engine updates the database; inertial ellipsoids are periodically
updated on the basis of the database records.

For a small number of database entries, a simple Euclidean
distance model is appropriate, while the ellipsoid model, being
characterized by more parameters, achieves a better represen-
tation when the number of samples increases to reach about
one hundred points [13]. For the above reasons, the ellipsoid
metric is chosen in the current work. Different metrics can
be considered with appropriate modifications. In particular,
complex shapes can be modeled by associating to a resource
a set of ellipsoids.

The system is being currently tested as a one-page web
application. The different building blocks shown in Figure 1
are implemented as separate C++ classes (the location broker
and the recommendation index generator) and collected into
one ActiveX component working also as position display (the
top left map in Figure 3). The component, written in C++
with the Microsoft Foundation Classes library, interacts with
the standard HTML form in the top frame of the browser to
generate the recommendation page in the bottom frame.

In order to have the system work with a small number
of actual users, to avoid statistical fluctuations, the actual
inertial ellipsoid is compensated by averaging with a fixed-
radius circle having the same center. Let r be a default radius,
for instance 1 kilometer; then

Nr =

(

r−2 0
0 r−2

)

is the matrix of the quadratic form associated to the circle
of radius r. The actual matrix used for the evaluation of the
ellipsoid metric of link l is the weighted average

M ′
l = wNl

Nr + (1 − wNl
)M−1

l ,

where the weight of the circle wNl
∈ [0, 1] tends to 0 as

Fig. 3. Screenshot of the experimental PILGRIM system. User identity,
location and map are shown on the top frame; the bottom frame contains
an item recommendation list; the ellipse in the map represents the inertial
ellipsoid of the link under the mouse pointer.

the number of accesses to link l increases. In the current
implementation,

wn = e−
n
2

k ,

with k depending on the problem scale and on the desired
convergence rate.

Figure 4 shows the behavior of the compensated inertial
ellipsoid for a site being accessed by 100 users, one at a
time. The graph shows the evolution of the ellipsoid when
r = 1000m and k = 500: at the beginning, when the site
is not yet very popular, the circular default prevails (though
the aspect ratio of the graph shows it as an ellipse); later, the
actual inertial ellipsoid outweighs the default circle and the
correct shape is reached. Note that the very first estimate, only
depending on the first access, can be off center with respect
to the rest of the distribution.

IV. THE ER-TREE: A SCALABLE IMPLEMENTATION

The PILGRIM recommendation system relies on a site
database recording the site name, URL, access statistics and
preference ellipsoid. To execute queries about site location,
some spatial indexes must be implemented. The number of
sites is bound to grow rapidly as the system develops and
learns, and the basic algorithm based on a sequential scans of
all items in order to find the nearest neighbors rapidly becomes
impractical. Smarter data structures, specifically tailored for
speeding up spatial queries need to be implemented.

A wide range of spatial data structures has been proposed
in the literature [19]. The data structure proposed in this paper
is the ER-tree (Elliptic R-tree), an extension of the R-tree for
the specific case of k-nearest-neighbor queries with different
elliptic metrics.

5

0

500

1000

1500

2000

2500

-500 0 500 1000 1500 2000 2500 3000 3500

y
(m

et
er

s)

x (meters)

Ellipsoid
User access coordinates

Fig. 4. Evolution in time of the compensated inertial ellipsoid representing
the spatial distribution of users entering a site. Note that the initial estimate,
the fixed-radius circle, is only based on the first access, and it can be off-
center with respect to the overall distribution. Subsequent ellipses are shown
every 10 steps.

Th proposed structure is based on the R-tree structure [20].
Let d be the number of spatial dimensions. The d-dimensional
R-tree is a hierarchy of nested d-dimensional intervals. At
each node, the corresponding interval is the bounding box of
intervals in its subtree. Leaves are the objects (or pointers
to the objects) in the database. Every node is required to
have more than m and less than M sons, where m and M
(m ≥ M/2) are parameters to be adjusted; only the root
is allowed to have as few as two sons. Algorithms to build
the R-tree structure try to keep the tree in a good condition
for queries by minimizing interval overlapping (which is in
principle unavoidable). Point queries can be answered by re-
stricting search only to branches whose bounding box actually
enclose the point; nearest-neighbor queries can take advantage
from branch-and-bound techniques. In fact, distance from a
bounding box is a lower bound for distances from all enclosed
objects.

The ER-tree data structure has been implemented in this
work for d = 2. The indexed objects in the database are the
centroids of the ellipses, having pointwise extension. In the
considered case, however, Euclidean distance from a bounding
box is not a lower bound for the actual distances of the
enclosed objects. In fact, in the aforementioned site model
every site has a different elliptical metric. To make the lower
bound work, every time a bounding box is calculated from
the enclosed objects, a corresponding elliptical metric must
be devised and applied.

Figure 5 shows how the overall metric for a bounding box is
calculated. All ellipses for the enclosed objects are translated
to the origin, and a “bounding ellipse” is built such that its
major axis corresponds with the largest major axis of the
ellipses, while the minor axis is calibrated in order to contain
all ellipses. Since every ellipse represents the unit-distance
locus for the corresponding metric, it is straightforward that
the overall metric is a lower bound for all enclosed metrics.
Every node in the tree contains, as an additional information,

Fig. 5. Determining a lower-bound ellipsoid metric

the overall metric corresponding to its bounding box.
Figure 6 shows part of an ER-tree, both by its actual spatial

structure and by its tree representation. Node a is shown with
its corresponding bounding box (the dashed rectangle) and its
subnodes (b to h). All subnodes, with the exception of d and
g, contain objects, i.e. leaves of the ER-tree; nodes d and g
contain lower-level nodes, which will be further decomposed.
The thick line surrounding the bounding box of a is the
locus of points having unit distance from the rectangle, and is
determined by the overall metric of the node.

V. EXPERIMENTAL EVALUATION

To evaluate the performance of the data structure with
respect to k-nearest-neighbor queries, some tests have been
performed on randomly-generated sites. On a square one-
kilometer area a certain number N (100 to 100000) of sites
are uniformly spread. Every site is assigned an ellipse. The
major axes of the ellipses follow a Gaussian distribution with
given average µ and standard deviation σ. The inclination of
the major axis and the eccentricity are uniformly distributed,
the first in the interval [−π/2, π/2), the second in [emin, 1],
where emin is the smallest admitted eccentricity. We used a
distribution of N = 100 sites with emin = 0.1 and µ = σ =
100m.

The ER-tree depends on one parameter M , the node maxi-
mum degree or “node size”, while the corresponding minimum
for non-root nodes has been set to m = bM/2c. The nearest
neighbors search algorithm depends on the number k of
neighbors to be returned.

Figure 7 shows the performance comparison between a
linear search in an array of sites and the branch-and-bound
search on the ER-tree for different distributions. Along the
x axis the number of sites is reported; the y axis represents
the average performance improvement obtained by the ER-
tree search. Performance is tested by counting the number
of distance evaluations. In fact, from preliminary experiments

6

a

c

g

e f

b

h

d

a

b hc d e f g

Fig. 6. An ER-tree node (top) and corresponding ER-tree representation
(bottom).

TABLE I

COMPARISON BETWEEN LINEAR ARRAY AND ER-TREE SEARCH FOR A

100000-SITE SAMPLE

R-tree Array Ratio % Differ.
Time (ms) 5.00 42.00 0.119 88.1%
Distance evals 9672.8 100000 0.097 90.3%
Memory (bytes) 22073344 21600000 1.022 2.2%

such as that shown in Table I we see that counting the
number of evaluations gives a good measure of the actual time
improvement, while time itself, when tested on a time-shared
machine, can suffer from many external influences. Parameters
of the test are k = 10, µ = 100m, emin = 1 (metrics are
isotropic), M = 100. The different lines in the graph show
the behavior for different values of σ. In particular for σ = 0
all sites have exactly the same radius. In this case, all metrics
are equivalent and the lower bound estimation on distances is
more effective. Every point in the graph shows the average of
100 tests, and error bars indicate the 95% confidence interval.
If radii are allowed to differ, up to a σ = 100m standard
deviation, then performance slightly degrades. Note that for
N = 100 sites no improvements are obtained, because if
N ≤ M only the root is filled and a sequential search over
all sites is therefore performed. However, improvements up to
90% are obtained as the number of items grows t N = 100000.

Figure 8 shows the same type of comparisons, where the
standard deviation of the major axis is σ = 100m, eccentricity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

100 1000 10000 100000

R
at

io
 v

s.
 a

rr
ay

 s
ea

rc
h

Number of sites

sigma=100
sigma=10
sigma=1
sigma=0

Fig. 7. Comparison between linear array and ER-tree search for different
item populations and different radius distributions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

100 1000 10000 100000

R
at

io
 v

s.
 a

rr
ay

 s
ea

rc
h

Number of sites

size=10
size=20

size=100
size=200

Fig. 8. Comparison between linear array and ER-tree search for different
item populations and different node sizes.

varies from a minimum of emin = .1 and the different lines
show how the performance changes if the ER-tree node size
varies from M = 10 to M = 200. Note that for small node
sizes the advantage over sequential search is almost negligible
(if N ≤ M all nodes must be visited anyway). Small node
sizes become unpractical for a large number of nodes, probably
because the depth of the tree grows considerably, and a long
downwards exploration must be undertaken before arriving to
the leaves.

A second set of experiments has been performed in order
to evaluate the performance of the system in a more realistic
context. The population structure of the Trentino region, shown
in the upper part of Figure 9, has bee used in order to generate
a more structured pattern of web sites. Trentino is a mountain
region with most people living within short distance from
the bottom of the valleys and concentrated near the main
towns. The system is likely to be used also by people moving
along roads, or by tourists spread along the whole territory. A
simulated usage test with N = 100 web sites resulted in the
pattern shown in the bottom part of Figure 9. Most ellipsoids

7

0

200

400

600

800

1000

-200 0 200 400 600 800 1000 1200

Fig. 9. The Trentino region (above) and ellipsoids of interest for localized
web sites (below: small dots represent distribution of single users; while
many are concentrated in towns and valleys, some are spread throughout the
territory).

are concentrated in towns, but a few are of wide interest: they
may correspond to a famous resource or to a mountain visible
from a large distance.

Figure 10 shows some preliminary comparisons between
linear scans and ER-Trees for the simulated environment.
Every point represents the average of 100 ten-nearest-neighbor
searches, and the error bars show the 95% confidence interval
for the mean. Note that the improvement with respect to linear
scan is comparable to that obtained on the random distribution
in Figures 7 and Figure 8.

VI. DISCUSSION AND CONCLUSIONS

We proposed a location-aware recommender system that
is integrated with a basic browser and that filters resources
(URLs) for a specific user. The filter is adaptive and takes
into account both the current user location and models re-
lating resources to geographic locations built by mining the
previous history of usage. The main advantage with respect
to existing systems lies in the automated creation of models
(without an explicit design to couple locations and URLs), the
flexibility and the independence from ad-hoc systems realized
by resource owners (that naturally tend to be biased, especially
for mobile commerce related sites).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

100 1000 10000 100000

R
at

io
 v

s.
 a

rr
ay

 s
ea

rc
h

Number of sites

Nodesize = 10
Nodesize = 50

Nodesize = 100

Fig. 10. Performance ratio of the R-tree data structure versus linear scan for
different node sizes and different numbers of indexed sites.

To allow a large degree of scalability demanded by a
large scale implementation, a hierarchical data structure has
been proposed and analyzed. The results on a model that
considers the population and building distribution of our region
(Trentino) show that performance of the ER-tree structure does
not degrade when implemented on a more structured pattern
of usage.

Techniques to select the appropriate privacy level can be
easily implemented. For example, if the user feels uneasy
about communicating her own precise location, the location
discovery procedure on the mobile client can be set in order
to add noise to the data that shall be transmitted to the
location broker. In this case, the server may respond with a
wider range of choices, to be refined by the client by using
the exact position. This option requires a larger amount of
communication and more CPU utilization by the client, so that
a tradeoff among user privacy, response accuracy and battery
consumption must be sought.

A future issue on the agenda is the implementation as a
distributed system where local databases contain information
about items close to the server location, and a peer-to-peer
content distribution scheme enables synchronization among
all local servers. In addition, the integration of the location-
broker with traditional recommendation system will permit
specialized implementations (like for example a system dedi-
cated to gourmet restaurants, to tourists interested in art and
monuments, to mobile shopping, etc.).

VII. ACKNOWLEDGMENTS

REFERENCES

[1] J. Steinberg and J. Pasquale, “A web middleware architecture for
dynamic customization of content for wireless clients,” in Proceedings
of Eleventh International World Wide Web Conference - WWW2002,
(Honolulu, Hawaii, uSA), May 2002.

[2] S. Duri, A. Cole, J. Munson, and J. Christensen, “An approach to pro-
viding a seamless end-user experience for location-aware applications,”
in Proceedings of the first international workshop on Mobile commerce,
(Rome), pp. 20–25, July 2001.

8

[3] T. Bohnenberger, A. Jameson, A. Krüger, and A. Butz, “User acceptance
of a decision-theoretic, location-aware shopping guide,” in IUI 2002:
International Conference on Intelligent User Interfaces (Y. Gil and D. B.
Leake, eds.), pp. 178–179, New York: ACM, 2002. Available from
http://dfki.de/∼jameson/abs/BohnenbergerJK+02.html.

[4] S. Pradhan, C. Brignone, J.-H. Cui, A. McReynolds, and M. T. Smith,
“Websigns: Hyperlinking physical locations to the web,” IEEE Com-
puter, pp. 42–48, Aug. 2001.

[5] P. Resnik and H. R. Varian, “Recommender systems,” Communications
of the ACM, special issue, vol. 40, pp. 56–58, Mar. 1997.

[6] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative
filtering to weave an information tapestry,” Communications of the ACM,
Dec. 1992.

[7] M. Balabanovič and Y. Shoham, “Fab: Content-based, collaborative
recommendation,” Communications of the ACM, vol. 40, pp. 66–72,
Mar. 1997.

[8] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon,
and J. Riedl, “GroupLens: Applying collaborative filtering to USENET
news,” Communications of the ACM, vol. 40, pp. 77–87, Mar. 1997.

[9] L. Terveen, W. Hill, B. Amento, D. McDonald, and J. Creter, “PHOAKS:
a system for sharing recommendations,” Communications of the ACM,
vol. 40, pp. 59–62, Mar. 1997.

[10] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabora-
tive filtering recommendation algorithms,” in Proceedings of WWW10,
May 2001.

[11] M. O’Connor and J. Herlocker, “Clustering items for collaborative
filtering,” tech. rep., University of Minnesota, department of Computer
Science, Minneapolis, USA, 2000.

[12] G. Karypis, “Evaluation of item-based top-n recommendation algo-
rithms,” tech. rep., University of Minnesota, Department of Computer
Science / Army HPC Research Center, Minneapolis, USA, 2000.

[13] M. Brunato and R. Battiti, “PILGRIM: A location broker and mobility-
aware recommendation system,” Tech. Rep. DIT-02-0092, Dipartimento
di Informatica e Telecomunicazioni, Universit à di Trento, Oct. 2002.
submitted.

[14] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The active badge
location system,” ACM Transaction on Information Systems, vol. 10,
pp. 91–102, Jan. 1992.

[15] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The
anatomy of a context-aware application,” in Proceedings of MOBICOM
1999, pp. 59–68, Aug. 1999.

[16] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based
user location and tracking system,” in Proceedings of IEEE INFOCOM
2000, pp. 775–784, Mar. 2000.

[17] T. Roos, P. Myllymäki, H. Tirri, P. Misikangas, and J. Sievänen, “A
probabilistic approach to WLAN user location estimation,” International
Journal of Wireless Information Networks, vol. 9, July 2002.

[18] R. Battiti, M. Brunato, and A. Villani, “Statistical learning theory for
location fingerprinting in wireless LANs,” Tech. Rep. DIT-02-0086,
Dipartimento di Informatica e Telecomunicazioni, Universit à di Trento,
Oct. 2002.

[19] V. Gaede and O. Günther, “Multidimensional access methods,” tech.
rep., Institut für Wirtschaftsinformatik, Humboldt-Universität zu Berlin,
1996.

[20] A. Guttman, “R-tree: A dynamic index structure for spatial searching,”
in Proceedings of ACM SIGMOD, 1984.

