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Abstract The amount of Earth Science related domain con-
cepts and vocabularies encoded in popular Semantic Web
languages such as OWL and SKOS grows rapidly as more
and more domain scientists realize the power of Semantic
Web Technologies. The interlinking between these concepts
will enable the possibility of performing data integration and
identity recognition, which is crucial in developing applica-
tions that use data from multiple sources. In this paper, we
discuss a new tool for performing concept mapping called
SEM+. In SEM+, we designed the Information Entropy based
Weighted Similarity Model to compute semantic similarity
between entity data and suggest possible linking. We also
adopted a blocking approach to group possible matching
entities into one block and therefore reduce the computation
space. We performed evaluations on SEM+ using the Inte-
grated Ocean Observatory System ontology and the Marine
Metadata Interoperability ontology and discussed the results
and new findings.

Keywords Ontologymatching . Instancematching .

Owl:sameAs . Entity resolution . Linked data

Introduction

Ontologies and domain vocabularies have been widely
adopted and used in Earth, environmental and geospatial
related sciences, such as the Semantic Web for Earth and
Environmental Terminology (SWEET) (Raskin and Pan
2005), NERC vocabularies (NERC Vocabulary Server
2999), and Global Change Master Directory (GCMD)
(http://gcmd.nasa.gov/). Many of these ontologies and vocab-
ularies make use of World Wide Web Consortium (W3C)
recommended formats such as Web Ontology Language
(OWL) (Bechhofer 2009), Simple Knowledge Organization
System (SKOS) (SKOS (2007)), and Resource Framework
Description (RDF) (Klyne and Carroll 2006). One of the
advantages of using such formats is that the knowledge and
concept representation can be easily processed by computers
(Berners-Lee et al. 2001). These ontologies and vocabularies
aimed to capture the semantics of the data and to represent
domain knowledge.

Due to the large number of ontologies in the domain and
different knowledge modeling scenarios and different con-
cept term representations, there is a semantic heterogeneity
issue among these ontologies. Sometimes, a same concept
may be represented by different terms in two ontologies. For
example, in geologic time, the term Tertiary is still used by
some geologists. It equals to the time span between the
Paleogene and Neogene Periods of the Cenozoic Era in the
2009 Geologic Time Scale chart by the Geological Society
of America (Walker and Geissman 2009), but no longer
used there. Sometimes, two terms from two different ontol-
ogies may have same meaning, such as the term Spring,
which can mean the season of the year or a natural source of
water. Because of this heterogeneity issue, knowledge and
data represented by different ontologies are difficult to be
integrated and reused by multiple systems. To reconcile such
differences of semantic representations among different
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ontologies, some efforts have been devoted to build a com-
mon semantic framework and to encode ontologies for Earth
sciences, such as SWEET. Even though such an ontology is
useful and powerful in solving the heterogeneity problem, it
requires a shared understanding of the concepts in a domain
and the semantic framework itself. This means for any new
comers who want to use the framework, there is a huge
learning effort required on the user to understand the frame-
work. Another way to solve this semantic heterogeneity
issue is to perform concept mapping among these ontologies
and vocabularies. Such mapping has been performed manu-
ally by the domain scientists, such as the mapping between
various geological time classifications (Haq 2007). Howev-
er, performing manual mappings can be time consuming and
often not scalable.

In order to solve the heterogeneity problem in a scal-
able manner, we built a semantic similarity based ontology
and vocabulary matching system, SEM+ (Similarity-based
Entity Matching). SEM+ implements a novel semantic
similarity computation model called the Information Entro-
py and Weighted Similarity Model (IEWS Model) to
suggest similarity measures between concepts from differ-
ent ontologies and vocabularies. Based on the similarity
measures, SEM+ creates “same as” links among those
concepts. SEM+ also implements a new prefix-based
blocking algorithm, which groups possible matching pairs
into one block. This blocking algorithm reduces the num-
ber of concept-pairs that are needed for similarity compu-
tation, which is useful when we are required to perform
mapping between two large domain ontologies. We tested
and evaluated SEM+ by performing matching tasks on
various Earth and environmental related ontologies. To
summarize, the main contributions of the paper include:

We present a new concept matching tools for Earth and
Environmental
related ontologies and vocabularies with high precision
and recall.
We present a prefix-based blocking algorithm which
reduces number of pair-wise matching computation and
allows trade-off between efficiency and effectiveness.
Our evaluation result shows that SEM+ can be used to
suggest many possible mappings across different domain
ontologies. These newly discovered concept mappings
can be leveraged by the domain scientists in related
studies.

The remainder of this paper is organized as follows: Relat-
ed work section discusses some existingworks in the literature
and compares them with our system. SEM+ section presents
the SEM+ system. Experimental evaluation is discussed in
Experiment section. Conclusions are presented in Conclu-
sions section.

Related work

To the best of our knowledge, we are the first one who develop
and apply concept matching tool to the Earth science domain.
However, our approach is related to research in both instance
and schema level matching conducted by the database and the
Semantic Web communities.

In database community, instancematching is also known as
concept resolution, record linkage (Newcombe and Kenedy
1962), deduplication (Sarawagi and Bhamidipaty 2002), ref-
erence reconciliation (Dong et al. 2005). Tools such as TAI-
LOR (Elfeky et al. 2005), BigMatch (Yancey 2002), MOMA
(Thor and Rahm 2007), and Swoosh (Benjelloun et al. 2009)
have been developed. These concept resolution tools follow
the single-global-threshold paradigm, where they compute
match suggestion measures in either supervised or unsuper-
vised manner and then compare the measures with a threshold
to determine the match. Chaudhuri (Chaudhuri et al. 2005)
proposed the compact set criterion and sparse neighborhood
criterion to enable more accurate characterization of duplicat-
ed records. Compared to these systems, our proposed work is
a semantic similarity driven matching system.

In the SemanticWeb community, algorithms are developed
to compute similarity between instance data on the Web of
Data, such as those presented in papers (Nguyen et al. 2012;
Volz et al. 2009; Rong et al. 2012). Volz et al. (Volz et al.
2009) used user configured information as a guide and com-
puted similarity measure for possible matching suggestion.
Compared to this approach, our approach doesn’t require user
configuration. SLINT (Nguyen et al. 2012) applied different
similarity computation methods to different type of values
such as dates similarity for date values, integer similarity for
integer values, etc., then combined these similarities to get
final similarity value for possible matching. Compared to
SLINT, our approach takes both common and distinguishing
descriptions into consideration while ignores descriptions that
are not present for differentiating one concept from another.
Rong et al. (Rong et al. 2012) extracted literal information
from the concepts and represented this information as vectors.
They then used the vector space model and other machine
learning techniques to compute a similarity score. Compared
to Rong et al.’s algorithm, our approach considers not only the
literal information but also the structural information.

Schema level ontology matching is a more studied field
compared to instance level ontologymatching in the Semantic
Web community. There are many impressive state-of-the-art
systems developed for the purpose of performing schema
level ontology matching (Shvaiko and Euzenant 2013). In this
section, we will focus on reviewing some of the similarity
based ontologymatching tools developed in recent years, such
as (Duan et al. 2012; Jean-Mary et al. 2009; Stumme and
Madche 2011; Euzenat 1994; Tang et al. 2006; Cruz et al.
2009). Among these systems, ASMOV (Jean-Mary et al.
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2009) computed the similarity between two concepts from
different ontologies by computing their lexical similarities and
structural similarities. Duan et al. (Duan et al. 2012) used
Jaccard Similarity and “Edit distance” similarity as two mea-
sures in similarity computation. FCA-Merge (Stumme and
Madche 2011) and T-Tree (Euzenat 1994) computed subclass
similarity, superclass similarity, lexical similarity, and con-
cepts’ instance similarities to suggestion mapping. Compared
to FCA-Merge and T-Tree, RiMOM (Tang et al. 2006) took
more information in similarity computation such as taxonomy
structure, concept names, etc. AgreementMaker (Cruz et al.
2009) first used TF*IDF model to compute cosine similarity
between two concepts. It then computed descendent similar-
ities and sibling similarities using the cosine similarities.
Compared to these systems, SEM+ considers that information
describing concepts has different weights and it uses a ma-
chine learning approach and an information entropy approach
to compute these weights.

In terms of scalability, to the best of our knowledge, not
many existing matchers investigated the problem (Jimenez-
Ruiz and Grau 2012; Nguyen et al. 2012), since most of the
existing matching systems were designed with focus on im-
proving precision and recall. They have been applied on small
datasets. SLINT (Nguyen et al. 2012), Rong et al.’s system
(Rong et al. 2012) and LogMap (Jimenez-Ruiz and Grau
2012) are three systems that have algorithms to reduce the
computation space. All those systems treated literal descrip-
tions of concepts as bags of words and used the inverted index
technique (Baeza-Yates and Ribeiro-Neto 1999) to create
blocks. Compared to these computation reduction techniques,
our blocking algorithm further reduces the concept-wise com-
putation using prefix blocks.

SEM+

In this section, we discuss the detailed implementation of
SEM+. We start by defining the problem we intend to solve.
Given two sets of concepts from two ontologies, namely C
andC′, where concepts c εC and c′ εC′. The concepts c and c′
are described by a set of statements δs in a triple format as
(subject, predicate, object). We then compute similarity scores
s between c and c′. The score s is in the range of 0 to 1, where 0
indicates c and c′ are dissimilar and 1 indicates c and c′ are
representing the same object. Based on this similarity score,
we select possible concept matches.

Overview

SEM+ consists of two major components: 1. Prefix-blocking
groups concepts that are likely to be similar to each other into
one block, and dissimilar concepts into difference blocks
based on the literal descriptions of the concepts such as

rdfs:label, rdfs:comment, etc. 2. IEWS Model takes two or
more concepts from the same block and computes semantic
similarity between these concepts. IEWS Model consists of
three sub-components. A Property Weight Learning
component learns the importance of the properties that are
used to describe the features of the given concepts, and assigns
weights to each property. An Information entropy computa-
tion component computes information entropy of the common
descriptions of two concepts. A Triple-Wise Similarity com-
putation component computes similarity between two triples.
An overview of SEM+ is depicted in Fig. 1.

Blocking algorithm

Giving two large sets of concepts, pairwise similarity compu-
tation becomes so expensive. Therefore reducing the number
of concept pairs for which similarity scores are to be computed
is important. In SEM+, we adopted a blocking algorithm to
reduce the computation space. The goal of blocking is to
group similar concepts into “same” blocks and dissimilar
concepts into “different” blocks as fast as possible, with
blocks as small as possible. Potential similar concepts should
be contained in the blocks as completely as possible. More
careful (thus more expensive) similarity computation is then
to be performed within each block to determine those exact
similarity score. In essence, the function of blocking divides
concepts into blocks with restricted size and thus reduces the
number of concept pairs for exact similarity score computa-
tion. Then the problem lies in how to find good indicators for
potentially similar concepts without using sophisticated for-
mulae such as SimF(c, c′), see Eq. (4), in the IEWS Model.

In many concepts, parts of the descriptions of the concepts
are presented in plain literal values. These literal descriptions
play an important role on describing the concepts. Assuming
that each concept eventually will be linked to a set of words
that describe certain properties of the concept, we can leverage
this information to perform keyword based indexing to help
improve the performance in terms of computation speed. In
SEM+, we proposed to compute the concept frequency (the
number of concepts a word belongs to) of words appear in the
literal descriptions (LDs) or non-URL descriptions, such as
labels and comments, and then to compare only the prefixes of
concepts. Here prefixes are certain number of words that have
the least concept frequency. When implementing the concept
blocking approach, words in each concept c are extracted and
an inverted index is built to record the list of concept for each
word w, and each list has size lw. Then we filter the inverted
index by removing the list for w if lw > lb, where lb is the
blocking parameter. The remaining words are the prefixes.
Since we only choose less frequent words to be prefixes, the
approach also follows the intuition that concepts sharing some
least common descriptions are much more likely to be the
same than those do not share, because these rare descriptions
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are usually key features of the concepts. Below is an example
of the blocking.

Example 1. Consider the following four concepts and their
corresponding LDs.

w ¼ A;B;C;E;K;Lf g x ¼ C;D;E;Lf g
y ¼ B;K;E;Lf g z ¼ A;B;Lf g

If lb=2, Then the prefixes and corresponding blocks are

A : w; zf g C : w; xf g D : xf g K : w; yf g

We can see this approach ignores the frequent words such as
B, E and L,which appear inmore than 3 documents. It also treats
concepts with different number of features equally based on the
rare-description-sharing criterion. Note that the blocks may con-
tain an overlap of some of their concepts. Since the final simi-
larity computation SimF(c, c′) will only apply to the concepts
within the same block, we reduce the number of SimF(c, c′)
computation from 6 to 3 in this example. For each concept pair
from different blocks, a similarity score 0 is assigned, in this
example, similarity score 0 is assigned to concept pair x and y.

This blocking stage makes it possible to make trade-offs
between efficiency and effectiveness in the matching compu-
tation. Greater blocking parameter values result more, and
bigger blocks, which do not speed up the matching process
dramatically but preserve more similar pairs in the blocks.
Smaller parameter values speed up the similarity computation
a lot, but discard more similar pairs out of the blocks.

Information entropy and weighted similarity model

Triple-wise similarity computation

The concepts in ontologies are described by a set of triples δ.
Each triple describes one of the properties about the concept.

Therefore, computing similarity between two concepts is the
same as computing similarity between the triples that describe
the concepts. In this section, we discuss how SEM+ performs
triple-wise similarity computation or pv similarity (Simpv)
computation.

One of the challenges when computing pv similarity is that
sometimes the data that describe the same information of the
concept are structured differently. For example, _:Boston
rdfs:type _:t1

_:t1 rdfs:label ‘City’
is same as
_:Boston _:category ‘City’.
To solve this problem, SEM+ first checks if the propertis of

the pvs are the same or there exists a property mapping
between the properties of the pvs and then uses Eq. (1) to
compute the similarity score. In the given example, a mapping
between rdf:type and _:category must be established before
the similarity computation. This property mapping is just a
sub-problem of ontology schema matching. In case of ontol-
ogy matching, property mapping between OWL, SKOS, and
RDFS is pre-assigned. In case of instance matching, we dif-
ferentiate the properties’ URLs to obtain ontologies that de-
scribe the properties, and thereafter perform property map-
ping.

Simpv pv; pv’ð Þ ¼
1 : Siml v; v0ð Þ if both vs are literal
2 : SimF v; v0ð Þ if both vs are U R L
3: extract and comute use Siml otherwise

8<
: ð1Þ

In Eq. (1), pv ε δ and pv’ ε δ’, v is the value part of
pv pair and p is the property part of pv pair. The formula
checks to see whether the value parts of both pv pairs are
URLs or literals. Note that, URL means that the value
points to another resource description. If both values are
literal, SEM+ computes the pv similarity using Lin’s sim-
ilarity (Siml) (Lin 1998). If both values are URLs, SEM+

Fig. 1 System overview of
SEM+: input is set of entities to be
matched and output is concept
matches
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computes pv similarity recursively using Eq. (4). In some
cases, it is costly to recursively traverse the URLs until
there is no URLs to follow and then compute similarity.
Therefore, in SEM+, we only traverse URLs to the depth
of three. In the case where one of the values is literal and
the other is a URL, SEM+ first extracts the resource
description of the resource point by using the URL, then

extracts the literal contents of the other value, and finally
uses Siml to compute the similarity. As a result of this
process we get a vector of pv similarity that represents the
similarity between concepts c and c′.

By applying triple-wise similarity computation algorithm
and the concept of Jaccard similarity, one can compute the
similarity between two concepts c and c′ as:

Sim c; c’ð Þ ¼
X

Simpv

X
Simpv þ α

���PV1
��� −

X
Simpv

� �
þ β

���PV2
��� −

X
Simpv

� � ð2Þ

Where jPV1j is the number of pvs in concept c and jPV2j is
the number of pvs in concept c′, and α and β are coefficients
of variation on the similarity measure on c and c′ unique
description.

Information entropy

Information entropy is a quantified measure of the uncertainty
of the information content (Shannon 1948). In the previous
section, we assume that each triple is equally important for
describing the entity in terms of precision. However, in reality,
the amount of information that each triple contains is different
in terms of discriminative power. For example, the amount of
information for the triple that describes the Social Security
Number is higher than the triple that describes the gender. In
information theory, Shannon suggests that the amount of
information can be quantified as information entropy.

To compute the information entropy presented in the de-
scriptions of concepts, we consider each property describing
the concept as a Variable X, and possible values of the prop-
erty as possible Outcomes xs. By knowing the outcome of X,
we eliminate the uncertainty because of variable X. For ex-
ample, if we are given a triple which describes the gender of
an unknown person (_:unknown _:gender ?g), then there will
be two possible guesses: male or female. The probability of

gender to be male or female depends on the distribution of the
poll of the unknown person come from. If the poll is binomi-
ally distributed, then the expected uncertainties or probabili-
ties of the unknown person to be male or female are both 1/2.
In other words, the information entropy for property _:gender
is 1/2. Therefore, if we know the value of _:gender, for
example, female, we can eliminate all concepts that are male.
Following is a formal definition for computing information
entropy of properties describe the concepts based on
Shannon’s entropy (Shannon 1948):

Given a property X, with possible values {x1, x2, x3, x4….
xn} and probability of obtaining each value as P(xi), then the
information entropy of X denoted H(X) is:

H Xð Þ ¼ −
X n

i¼1
P xið Þ logb P xið Þð Þ ð3Þ

where b is the base for the logarithm.

Final similarity computation

In previous section, we discussed howwe compute triple-wise
similarities. By putting everything together, we get the final
similarity computation formula:

SimF c; c’ð Þ ¼ H Pð Þ
X

Simpv

X
Simpv þ α

���PV1
��� −

X
Simpv

� �
þ β

���PV2
��� −

X
Simpv

� � ð4Þ

In this equation, H(P) is the information entropy of the
common descriptions, and P is the set of properties in∑Simpv.

Using Eq. (4), SEM+ computes final similarity score and,
based on the similarity scores, it suggests possible matches.
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Experiment

A prototype of SEM+ was implemented using Java and existing
frameworks such as Lucene1 and Jena.2 Using this prototype, we
conducted two experiments: 1. Study the accuracy of SEM+ in
both ontology schema matching and instance matching. During
this experiment, we set blocking parameter lb= full, to ensure that
we covered all possible comparisons and therefore it gives a
better understanding on the accuracy performance of SEM+.
SEM+ was configured to perform one to one matching. We also
set α and β to be 1 in the final similarity computation. In this
experiment, we also analyzed the effectiveness of proposed
Property Weight Learning component and Information Entropy
component in order to improve the accuracy of SEM+. 2. Study
how well our blocking algorithm reduces both the computation
space and the cost of reduction in terms of recall. In this exper-
iment, we set lb to different values in order to study the effect of
blocking. The experiments were carried out on a PC with 8 Intel
Xeon processors of speed 2.40 GHz and 32 GB memory. Each
processor has a 12 M cache.

Accuracy evaluation

The goal of concept matching is to discover and generate an
alignment among entities that refer to same real-world individ-
ual or concept. In some cases, concept matchers would either
match instances that are not referred to the same individual or
concept, or not generate a match where two instances are
actually refer to the same individual or concept. Therefore, to
evaluate accuracy of concept matching, it is necessary to find
out the number of incorrect match generated and correct match
missed. This is done by comparing the result generated by
concept matcher with a standard result. Then we can use this
information to compute precision, and recall F1 values. The
formula to compute each of these values is given as follows:

p ¼
M
\

S
���

���
M

r ¼
M
\

S
���

���
S

F1 ¼ 2pr

pþ r

In this formula,M indicates the set of alignments discovered
by instance matcher; S indicates the set of standard alignments.

Matching between integrated ocean observatory system
ontology and marine metadata interoperability ontology

We used our mapping algorithm to map vocabulary terms from
IOOS PlatformVocabulary,3 IOOS Parameter Vocabulary v2.0,4

MMI Platform Ontology,5 Climate and Forecast (CF) Standard
Names Parameter Vocabulary6 and DRDC Atlantic NADAS
Parameter Codes.7 We used those vocabularies and ontologies
because they are open access on the Internet and we saw similar
terms among them through a quick read. Mapping results were
compared with reference mappings found at MMI Ontology
Registry and Repository.8 To be specific, we mapped the fol-
lowing 3 pairs of vocabularies.

– IOOS Platform Vocabulary and MMI Platform Ontology
(IOOS-MMI)

– CF Standard Names Parameter Vocabulary and IOOS
Parameter Vocabulary v2.0 (CF-IOOS)

– DRDC Atlantic NADAS Parameter Codes and CF Stan-
dard Names Parameter Vocabulary (DRDC-CF)

In the experiment, we always first chose a vocabulary that has
fewer terms. Then for each term in that vocabulary, we tried to
find exactly one most likely match from the other vocabulary.
For example, for CF-IOOS, since CF has 2524 terms while
IOOS Parameter Vocabulary v2.0 has only 185 terms, we find
one most likely match from the 2524 terms in CF for each of the
185 terms in IOOS Parameter Vocabulary v2.0.We obtained 185
mapping results for this pair of vocabularies, of which we found
22 were tagged as “exact matches” in the reference mappings.

Table 1 summarizes our mapping results in comparison
with the reference mappings.

As we looked into the individual mappings to see what was
going on, we obtained some really interesting findings. For
example, our algorithm found the following match:http://
mmisw.org/ont/ioos/platform/aircraft = http://www.cdi.
com#Aircraft, thus it did not find the following match
because only one top match was picked for each term in
IOOS Platform Vocabulary:

http://mmisw.org/ont/ioos/platform/aircraft =
http://mmisw.org/ont/mmi/platform/Aircraft

, which is in the reference mappings. The match can be found
by simply changing a parameter to let the algorithm find top 2

1 http://lucene.apache.org/core/
2 http://jena.apache.org/
3 Available at http://mmisw.org/ont/ioos/platform, containing 34 terms.
4 Available at http://mmisw.org/ont/ioos/parameter, containing 185 terms.

5 Available at http://mmisw.org/ont/mmi/platform, containing 163 terms.
6 Available at http://mmisw.org/ont/cf/parameter, containing 2524 terms.
7 Available at http://mmisw.org/ont/drdc/parameter, containing 41 terms.
8 http://mmisw.org/orr/#b

Table 1 Mapping results compared with reference mappings

IOOS-
MMI

CF-
IOOS

DRDC-
CF

# Exact matches in reference 22 45 6

# Exact matches in reference SEM+
found

8 22 0
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matches instead of the top 1. After this tuning the number of
exact matches found increased from 8 to 13.

Our algorithm failed to find any correct mappings for
DRDC-CF. We looked into the matter and found that the
problem was related to common short function words used
in descriptions, such as in, at, and of. For example, the
term <http://mmisw.org/ont/drdc/parameter/_020> in
DRDC has the description “Depth in metres at GPS

position”, so we matched it with <http://mmisw.org/ont/
cf/parameter/sea_floor_depth_below_sea_surface> in CF,
which has the description “The sea_floor_depth_below_
sea_surface is the vertical distance between the sea
surface and the seabed as measured at a given point in
space including the variance caused by tides and possibly
waves” since they share quite some words such as
“depth”, “in” and “at”, and we failed to match it with
the correct one <http://mmisw.org/ont/cf/parameter/depth>,
whose description “Depth is the vertical distance below
the surface” does not share many words and ends up with
a slightly lower Jaccard similarity score.

Nevertheless, SEM+ was able to find the following highly
likely mappings which were not captured by the reference
mappings (Table 2).

Although we are not in the place of validating these map-
pings, we argue that they are good suggestions for the domain
experts to find missing mappings.

In terms of scalability, due to the lack of the large bench-
mark dataset in the Earth science domain, we evaluated the
blocking algorithm using the OAEI NYTimes to DBpedia
instance matching dataset.9 The question we asked is how
well can our blocking algorithm performs in grouping
matching entities into a same block. Using this dataset, we
evaluated the effect of our blocking algorithm by setting lb=2,
10, 50, 100. The number of computations reduced to are
presented in Table 3 and recalls (Rec) are presented in Table 4.

Recalls are computed with equation Rec ¼ M 0
M , where M’ is

the number of matching entity pairs found in the same block
and M is the total number of matching entity in the standard
file.

From Tables 3 and 4, we can see that the blocking algo-
rithm enables us to make trade-offs between computation time
and the number of wrongly discarded pairs. For example,
using the OAEI People dataset, with lb=50, we can use 259,
776 comparison computations to achieve 99.5 % of recalls
rate, compared to 4979*4977=24,780,483 comparison com-
putation to achieve 100 % of the recall rate, which is about 95
times faster.

Table 2 Highly likely mappings between IOOS vocabularies and other
ontologies or vocabularies found by SEM+

http://mmisw.org/ont/ioos/
platform/submersible

http://www.cdi.com#Submersible

http://mmisw.org/ont/ioos/
platform/glider

http://mmisw.org/ont/mmi/platform/
Glider

http://mmisw.org/ont/ioos/
platform/balloon

http://www.cdi.com#Balloon

http://mmisw.org/ont/ioos/
platform

http://mmisw.org/ont/mmi/platform

http://mmisw.org/ont/ioos/
platform/mooring

http://www.cdi.com#Mooring

http://mmisw.org/ont/ioos/
platform/aircraft

http://www.cdi.com#Aircraft

http://mmisw.org/ont/ioos/
platform/buoy

http://www.cdi.com#Buoy

http://mmisw.org/ont/ioos/
parameter/wet_bulb_
temperature

http://mmisw.org/ont/cf/parameter/
wet_bulb_temperature

http://mmisw.org/ont/ioos/
parameter/height

http://mmisw.org/ont/cf/parameter/
height

http://mmisw.org/ont/ioos/
parameter/air_density

http://mmisw.org/ont/cf/parameter/
air_density

http://mmisw.org/ont/ioos/
parameter/dew_point_
temperature

http://mmisw.org/ont/cf/parameter/
dew_point_temperature

http://mmisw.org/ont/ioos/
parameter/visibility

http://mmisw.org/ont/cf/parameter/
visibility_in_air

http://mmisw.org/ont/ioos/
parameter/relative_humidity

http://mmisw.org/ont/cf/parameter/
relative_humidity

http://mmisw.org/ont/ioos/
parameter/significant_wave_
height

http://mmisw.org/ont/cf/parameter/
sea_surface_wave_significant_
height

http://mmisw.org/ont/ioos/
parameter/time

http://mmisw.org/ont/cf/parameter/
time

http://mmisw.org/ont/ioos/
parameter/precipitation_
amount

http://mmisw.org/ont/cf/parameter/
precipitation_amount

9 http://oaei.ontologymatching.org/2011/instance/index.html

Table 3 Number of computation reduced to for different lb

lb Peop. Org. Loc. Comb.

2 5257 2571 2613 8779

10 39,998 26,747 21,310 75,388

50 259,776 177,396 203,442 567,443

100 591,918 362,984 480,197 1,197,011

Table 4 Recalls on different block size with number of correct pair
found in the same block

lb Peop. Org. Loc. Comb.

2 0.65(3243) 0.61(1195) 0.64(1241) 0.57(4999)

10 0.92(4596) 0.895(1745) 0.9(1725) 0.87(7687)

50 0.995(4951) 0.97(1892) 0.954(1827) 0.97(8624)

100 0.996(4958) 0.97(1894) 0.96(1838) 0.98(8682)
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http://mmisw.org/ont/ioos/platform/submersible
http://www.cdi.com/%23Submersible
http://mmisw.org/ont/ioos/platform/glider
http://mmisw.org/ont/ioos/platform/glider
http://mmisw.org/ont/mmi/platform/Glider
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http://mmisw.org/ont/ioos/platform/balloon
http://mmisw.org/ont/ioos/platform/balloon
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http://mmisw.org/ont/ioos/parameter/wet_bulb_temperature
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http://mmisw.org/ont/ioos/parameter/height
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http://mmisw.org/ont/ioos/parameter/dew_point_temperature
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http://mmisw.org/ont/cf/parameter/dew_point_temperature
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http://mmisw.org/ont/ioos/parameter/visibility
http://mmisw.org/ont/cf/parameter/visibility_in_air
http://mmisw.org/ont/cf/parameter/visibility_in_air
http://mmisw.org/ont/ioos/parameter/relative_humidity
http://mmisw.org/ont/ioos/parameter/relative_humidity
http://mmisw.org/ont/cf/parameter/relative_humidity
http://mmisw.org/ont/cf/parameter/relative_humidity
http://mmisw.org/ont/ioos/parameter/significant_wave_height
http://mmisw.org/ont/ioos/parameter/significant_wave_height
http://mmisw.org/ont/ioos/parameter/significant_wave_height
http://mmisw.org/ont/cf/parameter/sea_surface_wave_significant_height
http://mmisw.org/ont/cf/parameter/sea_surface_wave_significant_height
http://mmisw.org/ont/cf/parameter/sea_surface_wave_significant_height
http://mmisw.org/ont/ioos/parameter/time
http://mmisw.org/ont/ioos/parameter/time
http://mmisw.org/ont/cf/parameter/time
http://mmisw.org/ont/cf/parameter/time
http://mmisw.org/ont/ioos/parameter/precipitation_amount
http://mmisw.org/ont/ioos/parameter/precipitation_amount
http://mmisw.org/ont/ioos/parameter/precipitation_amount
http://mmisw.org/ont/cf/parameter/precipitation_amount
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http://oaei.ontologymatching.org/2011/instance/index.html


Conclusions

In this paper, we presented SEM+, an automatic concept
matching tool with detailed discussion of the blocking algo-
rithm and the IEWS model for similarity computation. Man-
ually creating mappings between two ontologies or sets of
vocabularies can be time consuming and is often not scalable
given the massive amount of concepts and ontologies created.
Therefore, a tool that can automatically suggest possible map-
pings can significantly reduce the human effort in creating
such mapping. We performed the evaluation using Earth
science related ontologies. We compared our mapping results
with existing manually created mappings and discussed relat-
ed limitations and advantages of the developed methods. In
the future, we are interested in using domain thesauri to
improve the accuracy of performed matching. Domain the-
sauri offer more precise definition of concepts in a context. By
using them, the SEM+ will be able to give a more accurate
similarity score.
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