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Extensible Markup Language (XML) has grown rapidly over the last decade to become

the de facto standard for heterogeneous data exchange. Its popularity is due in large

part to the ease with which diverse kinds of information can be represented as a result

of the self-describing nature and extensibility of XML itself. The ease and speed with

which information can be represented does not extend, however, to exchanging such

information between autonomous sources. In the absence of controlling standards,

such sources will typically choose differing XML representations for the same concept,

and the actual exchange of information between them requires that the representa-

tion produced by one source be transformed into a representation understood by the

other. Creating this information exchange ‘‘glue’’ is a tedious and error-prone process,

whether expressed as Extensible Stylesheet Language Transformation (XSLT), XQuery,

Javae, Structured Query Language (SQL), or some other format. In this paper, we

present an extensible XML mapping architecture that elevates XML mapping

technology to a fundamental integration component that promotes code generation,

mapping reuse, and mapping as metadata.

INTRODUCTION
The advent of the Internet and standard transfer

protocols have made it easier for enterprises to

programmatically exchange information, and Ex-

tensible Markup Language (XML) has grown rapidly

over the last decade to become the de facto standard

for this data exchange. Indeed, investments in

architectures such as Enterprise Information Inte-

gration (EII)
1

and service-oriented architecture

(SOA)
2

demonstrate that integration initiatives

occupy a significant portion of information tech-

nology spending. While XML and related technolo-

gies have made heterogeneous data exchange

possible, actual information exchange is not yet

automatic—or even easy. A primary reason is that

autonomous sources of information, in the absence

of controlling standards, typically choose differing

XML representations for the same concept, and

information exchange between them requires that

the representation produced by one source be
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transformed into a representation understood by the

other.

Structured Query Language/XML (SQL/XML),
3

Ex-

tensible Stylesheet Language Transformation

(XSLT),
4

and XQuery
5

are transformation languages

that can be used to specify how to transform XML

from one format to another, and several XQuery and

XSLT transformation engines exist that can process

such transformations.
6,7

Although such languages

are quite powerful, it can often be very difficult to

express the transformation by hand in these

languages. For example, consider a simple trans-

formation that combines a customer’s personal,

account, and bank transaction information into a

single XML document for use by a bank teller

application. Figure 1 illustrates the transformation

and the XQuery that expresses it.

Although the visual relationships shown at the top

of Figure 1 are intuitive, the XQuery statements

demonstrate that expressing even this simple trans-

formation is quite verbose, and to do so by hand is

tedious and error-prone. The three source docu-

ments may contain multiple instances of personal,

account, and transaction information, and the

complexity of the XQuery specification is to ensure

this information is properly joined and grouped to

associate clients with their accounts and accounts

with their transactions.

Mapping technology helps to automate this process.

A visual mapping tool is used at design time to

specify a high-level, language-neutral description (a

mapping) of how to turn thing A (e.g., descriptions

of the personal, account, and transaction informa-

tion in Figure 1) into thing B (e.g., a description of

the bank teller’s view in Figure 1). The mapping

tool translates the mapping into executable code,

which can then be deployed to a runtime engine that

can repeatedly perform the transformation over

multiple input data streams.

Although the example in Figure 1 used instance data

to illustrate the transformation and indeed, at

runtime the transformation occurs over large vol-

umes of instance data, a mapping tool usually works

with descriptions of instance data. Implicit in this

statement is the assumption that instance data

adheres to a structure that can be described in a

machine-readable format. (Unstructured mapping,

such as the derivation of structured information

from a text document, spreadsheet, and so forth, is

an area rich with requirements and technology, but

is outside the scope of this paper.)

Since the advent of XML, at least one of thing A or

thing B is usually an XML schema, while the other

can be described in a number of different ways, such

as another XML schema or Document Type Defi-

nition (DTD), a relational schema, a COBOL

(common business-oriented language) copybook, or

one of many other legacy data formats. Other

possible variations include transforming XML

documents by means of XQuery or XSLT specifica-

tions or generating an XML document from rela-

tional tables by means of SQL/XML statements.

Another important case is to transform data from

XML to another format. Legacy systems running in a

mainframe environment must frequently adapt to

accept XML as input, such as a mainframe-based

order system written in COBOL adapting to process

orders submitted through a Web application. Note

also that as information flows through an enterprise,

it may be necessary to connect a series of mapping

steps together, and as a result, thing A and thing B

may be part of a larger topology of mapping steps.

In this paper, we discuss the current state of XML

mapping technology and its requirements, present

an extensible framework and architecture that

address those requirements, and discuss the chal-

lenges that remain. We describe a set of motivating

examples drawn from different contexts—EII and

SOA—and include an overview of requirements that

can be derived from these and other scenarios for

software tools that enable and automate mapping

and transformation. We then describe an extensible

architecture for a mapping tool to address these

requirements, followed by a description of a set of

research challenges that still remain.

MOTIVATING EXAMPLES
There are many places to look for motivating

examples for XML mapping technology. In this

section we focus on two important areas that have

arisen from the need to integrate existing assets:

EII—driven by the need to bring large volumes of

disparate information together, and SOA—driven by

the need to orchestrate applications into integrated

business processes.

Enterprise Information Integration
Information captured, processed, and produced by

enterprise applications is growing at an enormous
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rate, and the need to connect and unify such

information is growing just as rapidly. EII provides a

unified view of related information from disparate

systems in real time without copying or moving the

data to a central repository or warehouse. Many

software vendors provide EII products, including

IBM,
8

MetaMatrix,
9

and Sify.
10

The runtime engine

for EII is typically a database engine or its

equivalent, and the transformation language is SQL.

Let us consider a typical (if simplified) scenario for

EII. A banking institution offers multiple financial

services, including, for example, checking and

savings accounts and loans. These services are

provided by multiple overlapping departments that

represent acquisitions of other institutions. Each

department has autonomously created its own

representation for customers, its own financial

arrangements with those customers, and its own

Figure 1
A simple transformation expressed in XQuery

Source Documents

Target Document

XQuery
let $top := doc("Customers.xml")/root, $customer := $top/Customer
return
<BankTeller> {
  for $cid in fn:distinct-values($customer/cust_ID), $name in fn:distinct-values($customer[cust_ID eq $cid]/name)
  return (
    <Client>
      <ID>{$cid}</ID>
      <name>{$name}</name>
      { let $account := $top/Account[Cust_ID eq $cid]
         where not(fn:empty($account))
         return 
           for $type in fn:distinct-values($account/Acct_Type), $accid in fn:distinct-values($account[Acct_Type eq $type]/acct_ID)
           return (
             <Accts>
               <AcctType>{$type}</AcctType>
               { let $transaction := $top/Transaction[Acct_ID eq $accid]
                  where not(fn:empty($transaction))
                  return
                    for $date in fn:distinct-values($transaction/date), $amount in fn:distinct-values($transaction[date eq $date]/amount)
                    return (
                      <Activity>
                        <date>{$date}</date>    
                        <amount>{$amount}</amount>
                      </Activity>
                    ) } 
             </Accts>
            ) }
       </Client>
  } 
</BankTeller>

<Client>
  <ID>1</ID>
  <name>Cinderella</name>
  <Accts>
    <AcctType>Checkings</AcctType>
      <Activity>
        <date>06/25/2003</date>
        <amount>150.00</amount>
      </Activity>
   </Accts>
</Client>

<Customer>
  <cust_ID>1</cust_ID>
  <name>Cinderella</name>
</Customer>

<Account>
  <acct_ID>205</acct_ID>
  <cust_ID>1</cust_ID>
  <acct_Type>Checking</acct_Type>
</Account>

<Transaction>
  <acct_ID>205</acct_ID>
  <date>06/25/2003</date>
  <xact_Type>W</xact_type>
  <amount>150.00</amount>
</Transaction>
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vocabulary of terms—and stores that information in

a set of relational tables. For example, Bank A tracks

all arrangements (loans, checking accounts, and

savings accounts) in a common set of tables, while

Bank B tracks each type of arrangement separately.

The data architect for an institution that acquired

both banks wants to consolidate the different

representations of loan and account information into

a unified model with a common structure and a

common set of terms. This is needed to foster a

global understanding of the information captured

and processed by the bank. As a secondary step, the

architect would like to provide tailored views of that

information which can be embedded in different

applications destined for different user roles

throughout the institution. These views are often

restricted to a subset of the information (determined

by the user role and authorization), and they require

restructuring, renaming, and reformatting of the

data.

Figure 2 illustrates a potential solution for this

scenario. The data architect can define a standard

model and define maps from the existing depart-

ments to the standard model that specify how to

rename and restructure the department information

in terms of the standard model. In this scenario, the

data architect has represented the standard model in

terms of a class diagram expressed in Unified

Modeling Language** (UML**).
11

He has then

defined maps from the Bank A relational schema to

   Accounts
Account_ID
Customer_ID
Account_Type
...

*

*

*

*
*

Figure 2
An Enterprise Information Integration (EII) example

Bank Teller View
(XML schema) 

Client
 ID
 Name
 ...
 Accts (0..*){
  AcctID
  AcctType
  Activity (0..*){
     Date
     Amount}}
...}

CLIENT_ACCTS

…DateAcctID

…AcctIDID …NameID

ACCT_ACTIVITY PROFILE

Where AcctType =
‘Checking’ or ‘Savings’
Where CurrentDate - 
Activity.Date < = 180

RatingDateACCTIDID

Standard Model
(Class Diagram)

…

Map legacy
schemas to
standard model

Map standard
model to 
custom views 

CLIENT

Risk Analysis View
(XML schema) 

Profile (0..*)
  Rating
  Accounts (0..*) {
   Balance
  }
}

Bank A (Relational) 

…DateLoanNumber

…DateID

LOANS

ACCT_HOLDER_PROFILE

...RatingNameID

ACCOUNTS

Bank B (Relational) 

   Customer
Customer_ID
First_Name
Last_Name
...

  Transactions
Account_ID
Date
Transaction_Type
Amount

  Profile
Customer_ID
Date
Rating
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the standard model and from the Bank B relational

schema to the standard model. Additionally, a map

has been defined from the standard UML model to

the customized views needed by two different Web

applications. Because XML is a more suitable data

format for Web applications, these views are defined

by XML schemas. The first schema represents

information accessible by bank tellers, who are

authorized to see the last six months of checking

and savings account activity by a particular cus-

tomer, but who are restricted from seeing informa-

tion about the customer’s loan information and

credit risk profile. The second schema represents

information accessible by risk analysts. They are

allowed to see a detailed view of the account

balance and credit risk rating for all customers, but

personal identifying characteristics are removed

from the data.

This scenario illustrates a rich set of requirements

for XML mapping technology. Notice that the source

and targets of the mappings are represented by three

different formats: relational, UML, and XML Sche-

ma. In addition, data must be joined (e.g., the

CLIENT, CLIENT_ACCTS, ACCT_ACTIVITY, and

PROFILE on the Bank A schema), and unioned (the

Bank A and Bank B schemas). Data is aggregated (a

credit rating per customer per time period to a single

rating per customer) and conditionally transformed

to the final XML representation (bank tellers can see

only checking and savings account activity for the

past six months). The scenario also illustrates a need

to combine maps two ways: in parallel, to combine

the Bank A and Bank B schemas to form the

standard model; and serially, to compose the final

XML schema as a single transformation rather than

as a two-step process—from existing relational

schemas to the standard model to the customized

schema.

Finally, notice the difference in terminology used by

each of the data models. A mapping tool that

requires a user to manually match elements by hand

would be at best tedious (e.g., BankA.PROFILE.

Rating! Standard.Profile.Rating), and at worst

impossible if there is no obvious semantic informa-

tion that indicates two differently named elements

refer to the same concept. For example, suppose the

standard model includes ‘‘Alternate Address’’ for

clients, and the BankA. CLIENTS table contains a

column called ADDRESS2. Is ADDRESS2 the second line

of the client’s primary address, or is it an alternate

address?

Service-oriented architecture

While EII is focused on real-time information

integration, SOA is focused on integrating applica-

tions at the interface layer and integrating the data

exchanged between them. SOA and its predecessor,

Enterprise Application Integration (EAI), have be-

come strategically important for enterprises to

increase information technology efficiency by reus-

ing and integrating existing assets and to improve

quality and customer satisfaction through automa-

tion.
2

Figure 3 illustrates an SOA implementation of the

EII banking institution scenario. The Enterprise

Service Bus (ESB) publishes a requestor service,

named Account, with operations createAccount()

and getAccount() to be invoked by the new Web

application. This requestor service is supported on

the ESB by routing to the appropriate customer and

banking provider services registered to the ESB by

the bank’s subsidiaries. In such a model, the

customer service offers life-cycle operations, like

create, delete, and update, and the banking

service offers typical banking operations, like

createAccount, getAccounts, and

getBankLocation.

Message mapping (that is, the service parameters) is

key to enabling transparency, and designing maps

between services represents a major focus for SOA

architects. XML schemas for messages can grow

large and use complex constructs, such as attribute

groups, redefines, extensions, and restrictions.

Mapping expressiveness in SOA is reminiscent of the

EII scenario, including joins, conditions, scalar

functions (e.g., concatenate first and last name to

produce full_name), and set-based functions (e.g.,

compute the sum in a repeating list of numeric

values or sort the result by a particular attribute).

Both the EII and SOA scenarios underscore the

importance of XML mapping technology and draw

out a number of algorithmic requirements. It is also

important to note the skill level of the users in both

of these scenarios. For instance, data architects and

integration specialists, while technically knowl-

edgeable, are not necessarily programmers. As a

result, ease-of-use features, such as highly visual

editors, visual differentiation for various types of
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maps (e.g., joins compared with unions), live output

samples, tree views, graphical views, and source

views (for the more highly skilled)—are critically

important for any set of mapping tools used for this

community of users. Further, rich problem deter-

mination tools are also important, including visual

debugging, real-time validation with error correla-

tion, and runtime trace support.

STATE OF THE ART

Many tools are specialized to address a specific

business problem or are targeted at specific runtime

execution environments and thus only produce

executable code in a single language (such as XSLT).

Other mapping tools are loosely coupled from the

runtime execution language and are capable of

generating to multiple executable transformation

languages. Mapping tools generally follow one of

two visual metaphors, either highlighting the

relationships between a source and target (relation-

ship based) or highlighting the functional steps

required to transform a source to a target (function

based).

Relationship-based mapping tools

Relationship-based mapping tools typically display

source data structures on the left side and target data

structures on the right side. Relationships between

fields and sets of fields in the source and target data

structures are visualized by connecting lines

(though there are some exceptions). In many tools,

relationships can be annotated with functions,

conditions, and other transformation information.

The relationships and the semantics implied by the

source and target descriptions are captured in a data

structure, which is typically saved in a proprietary

format and used to generate transformation code.

Some tools maintain an intermediate representation

and generate the transformation logic in multiple

executable languages, such as XSLT, XQuery, and

Java** code. The intermediate representation in-

Figure 3
A banking scenario implemented on an SOA architecture 

Enterprise Service Bus
(ESB)

Requestor
Services 

Account

createAccount ( )
getAccounts ( )

Account

Customer

Mapping and Routing

ClientAcct

BankingA
  createAccount ( )
  getAccounts ( )
  getBankLocation ( )

Client

CustomerA
  createCustomer ( )
  getCustomer ( )
  deleteCustomer ( )

Account

BankingB
  createAccount ( )
  getAccounts ( )
  getBankLocation ( )

AccountHolder

CustomerB
  createCustomer ( )
  getCustomer ( )
  deleteCustomer ( )

New Web 
Clients

Provider Services 
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troduces the difficulty of keeping the mapping

specification and the generated code synchronized.

An alternative approach, such as that used by

Progress Software Stylus Studio**, is to save the

mapping specification directly as generated code.

This means that the generated transformation code

can be reinterpreted and visualized when loaded

back into the tool.

A relationship-based approach offers a nice ab-

straction, particularly for less technical users.

However, a relationship-based tool is generally not

Turing-machine equivalent (any computable func-

tion can be expressed and computed by the

software), and therefore cannot be used to express

every possible transformation. Relationship-based

tools handle this by providing some kind of user exit

that allows a user to write directly in the target

language, typically with an integrated language

editor. Furthermore, because relationship-based

tools operate at a higher level of abstraction than

executable code (e.g., one line may correspond to

several lines of code or several function invoca-

tions), debugging and testing features typically

operate directly on the generated transform rather

than the mapping specification itself.

Function-based mapping tools

A second class of tools that provide XML mapping

capabilities offers a more functional, programming-

language-oriented approach. Rather than directing

the user to visually define relationships between a

source and a target, the mapping tool assists the user

in building the transformation logic, often through a

spreadsheet metaphor. An example of this approach

is the IBM WebSphere* DataStage* TX product.

Source and target schemas are converted to a

proprietary type system, and users fill in spread-

sheet cells to create submappings that functionally

map one type to another. Submappings can be

nested into larger mappings to map more complex

types.

The functional approach gives the user more control

over specifying both the details and the order of the

actual transformation steps and is typical of sce-

narios with a high degree of complexity and

performance requirements. A function-based tool

can offer quite powerful expressions and, depending

on the language exposed to users, can offer Turing-

machine-equivalent transformations.

Function-based mapping tools are generally targeted

at skilled technical users for two reasons. First,

defining a map programmatically generally requires

that the user learn and understand a programming

language. Second, the power and fine-grained

control of a function-based approach comes at the

expense of visualization; it is easy to see the details

of a specific source-to-target transformation, but it is

more difficult to intuit a higher-level source-to-target

mapping.

Discussion

A more detailed review of XML mapping products

reveals that there are a wide variety of tools

available and that capabilities vary from vendor to

vendor. Most are targeted at solving a particular use

case (for example, converting relational data to

XML, transforming one XML document to another,

transforming one message format to another) and,

more significantly, all are primarily focused on

assisting users to generate executable transforma-

tion code. The popularity and number of such tools

indicates that such code generation is very valuable.

However, code generation is really only one aspect

of building and maintaining business applications,

particularly when such applications are focused on

integrating existing applications to perform new

function. We believe there are two additional goals

that XML mapping technology can and should

facilitate: mapping reuse in multiple contexts and

treatment of the mapping information itself as

metadata.

Mapping reuse

A multistep, multicomponent application may re-

quire multiple mapping steps along the way.

Consistency of structure, terminology, and function

throughout the business application is critical and

difficult to achieve with today’s mapping tools. It is

expensive to research, purchase, and learn how to

use different mapping tools for different use cases,

and there is often a disparity of function offered at

each of the different steps of the application. For

example, the standard banking model in our EII

scenario should also serve as the canonical model

for information in the SOA scenario, even though

the executable transformation language and runtime

systems differ. Ideally, the banking institution

should use a single XML mapping tool to transform

and structure its information throughout the enter-

prise, regardless of whether it is rendered in SQL/

XML, XSLT, or even Java code.
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Mapping as metadata

Enterprises today must deal with thousands of

information sources, and the majority of time on an

integration exercise is spent trying to find the subset

of information that is relevant. A significant

integration challenge is to discover how and what to

integrate in the first place and to remember why you

did so later on, either because applications have

evolved or because different team members at

different geographic locations and different times

are involved in building and maintaining the

application. At its core, mapping information is

metadata that captures the relationships among a set

of information sources and documents the decisions

made and reasons why the information was

structured in a particular way.

For example, suppose a particular piece of infor-

mation could potentially come from two sources

(such as a credit rating for a customer that had

accounts at two subsidiaries of the bank), and the

data architect, in consultation with business ana-

lysts, determined which of multiple sources to use

and how to combine the information. The mapping

implicitly records not only the transformation, but

the thought process behind the transformation,

including which source was chosen (and which was

not), or which computations were performed to

combine the information.

Unfortunately, because XML mapping tools on the

market today are focused on code generation, they

store the mapping information either in a propri-

etary format or simply as executable code itself.

Neither format is suitable for mapping to be used as

metadata. Very few tools offer any help at discov-

ering relationships among sources. Ideally, mapping

metadata should be exposed and structured in a way

that facilitates a collaborative and iterative design

process (including user-defined annotations to

document decisions). Such mapping information

can be used to record and document relationships,

can be populated by automated discovery processes,

and can be stored in a repository, where it can be

reviewed, reused, and provide the ability to play

‘‘what if’’ scenarios and assess the impact of changes.

AN EXTENSIBLE XML MAPPING ARCHITECTURE

We propose an extensible, model-based architecture

for XML mapping technology that supports the goals

just described. The architecture includes several of

the ideas developed as part of the Clio research

project
12–14

and also fits (at the high level) in the

model management framework of Bernstein.
15

This

architecture has been implemented and tested for a

variety of source and target combinations—includ-

ing relational database (RDB)/RDB, RDB/XML,

XML/XML, Web Services Description Language

(WSDL)/WSDL, and Java object/XML—and to gen-

erate a variety of transformation languages, includ-

ing SQL, SQL Data Definition Language (DDL),

XQuery, XSLT, and Java. It forms the foundation for

IBM Rational* Data Architect and has facilitated a

Figure 4
An extensible model-driven XML mapping architecture 

Core Architecture Extension Points

User Interface
  Source, target, and 
  mapping visualization

Mapping Population
  (optional)

Mapping Semantics
  Source, target and mapping model,
  management and serialization

Code Generation

Source/target model viewers

Runtime expression editor

Runtime transformation
Code generation

Discovery rules and 
algorithms

Model manager
Mapping domain
Mapping policy

Configuration

Source/Target Registry

Interfaces

  User interface

  Population

  Semantics

  Code generators
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number of additional research projects in the areas

of discovery,
16

schema evolution,
17,18

query re-

write,
19

mapping semantics,
20

mapping composi-

tion,
21

and dependency extraction.
22

As illustrated in Figure 4, the architecture is

composed of four components that provide the core

services for XML mapping: user interface, mapping

population, mapping semantics, and code genera-

tion. The user interface component provides the

functions to visually display, create, and edit a

mapping. The mapping population component

provides an interface to programmatically compute

a mapping. The mapping semantics component

captures and manages the semantics of the trans-

formation. The code generation component trans-

lates the mapping semantics into one or more forms

of executable transformation code. As shown in the

middle column of the figure, each of these compo-

nents includes appropriate extension points to tailor

the base function to specific mapping scenarios. A

configuration combines the base function and

extensions with a registry to form a customized

mapping tool. Each of the components is described

in more detail later, followed by a description of the

configurations that satisfy the requirements of the

scenario introduced before. We begin with the

mapping semantics component, which is the anchor

point for all other components.

Mapping semantics
As shown in Figure 5, a mapping exercise involves

two kinds of models: models that represent the

sources and targets of mappings and the mapping

itself. Source and target models represent the

structures (or schemas) to be transformed. They are

typically pre-existing and well defined, and often

have standards organizations governing their struc-

ture. As discussed in the introduction, for XML-

based scenarios, at least one of the endpoints is

defined by XML Schema. Integration scenarios often

add additional formats. For example, the scenarios

presented before require at least three other formats:

relational schema, UML, and WSDL.

The mapping model captures a transformation

between a set of sources and targets as declarative

assertions at a higher level of abstraction than the

target transformation language, and serves as the

anchor for achieving the goals of code generation,

mapping reuse, and mapping as metadata. First, it

records the basic transformation semantics in a

runtime-independent format, which can be written

or rewritten into multiple transformation languages.

Second, the declarative assertions can be expressed

formally as logical operators and so promote

programmatic reasoning, such as composition,

aggregation, inversion, and extraction of depen-

dencies to convert a transformation from one

runtime format to another. Finally, the mapping

model can be annotated and serialized to a human-

readable format that facilitates reporting and

collaboration.

A detailed description of the mapping model first

requires an introduction to model managers, whose

role within the architecture is to handle schema

model heterogeneity.

Model managers

Figure 5 shows that model managers provide a

virtual translation of the native model into a

canonical, or common, model in which semantics

can be defined and validated. For XML-centric

mapping, XML Schema is a logical choice for the

Figure 5
Extensible model-driven mapping

Serialized to

Generated 
from

Mapping 
Specification 
Language
(MSL)

Transformation 
Code

Model 
Managers

Source Models

Model 
Managers

Mapping Model

Target Models
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canonical format. Each type of source or target

model requires a model manager, which is made up

of three extension points: a model viewer, a trans-

former, and a resolver.

The model viewer displays the model in its native (or

most intuitive) format by the user interface.

The role of the transformer is to convert instances of

the schema model into the canonical schema model.

The model manager uses the transformer to main-

tain a bidirectional mapping between the original

(and visualized) model instances and the canonical

model instance. Validation and code generation rely

on this translation to convert XML schema objects to

the original format, and vice versa. The mapping

model contains references (or endpoints) to the

source and target models. These references are

implemented with resolvers, whose role is to

uniquely identify and define objects in the source

and target models (such as an attribute name on an

XML schema or a column name of a relational

table).

Mapping model

The mapping model consists of two components: an

in-memory object model that can be visualized and

interpreted and a human-readable serialization XML

format, called the Mapping Specification Language

(MSL). The ability of the mapping model to be

serialized is a key benefit of the architecture. It

allows external processes to programmatically pro-

duce mapping information, to interpret the mapping

instances into other formats (e.g., to create an

HTML [Hypertext Markup Language] report of the

mapping contents), and to persist it (give it

permanent storage) in a shared metadata repository,

where it can be further queried, searched, and

analyzed.

Figure 6 shows in UML the core classes that make

up the mapping object model. Relationships be-

tween source and target objects are referred to as

mappings, and an instance of the mapping model is

a tree of mapping objects. The mappingRoot object

represents the top-level mapping object. Each

mapping may also have a list of refinements, or

annotations, that add semantics to the relationship.

The following are examples of refinements:

� Scalar functions: concat (source.firstname,

source.lastname) ! target.fullname

� Conditions: if (source.date ,¼
source.expiration_date)

functioncondition

Figure 6
The mapping object model

mapping mappingRoot

0..n

0..n+input

+output

0..n
+refinement

0..n+nested

Object
(the physical object)

0..1

resource
(logical info)

refinement

filterjoin
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� Set functions: union (source1, source2)

� User-defined annotations: ‘This relationship

was added by Jane Doe’

We can use a subset of the EII scenario to build an

instance of a mapping model, which we will express

in its serialized MSL format. We start by creating a

mappingRoot object and setting its input and output

resource list to include only one source-side

resource (represented by the file URI stdModel.uml)

and one target resource (represented by

bankTeller.xsd), respectively.

,mappingRoot.

,input path¼‘‘stdModel.uml’’ root
¼‘‘StandardModel’’/.

,output path¼‘‘bankTeller.xsd’’ root
¼‘‘BankTeller’’/.

,/mappingRoot.

We classify mapping into two groups: value map-

pings represent correspondences between schema

elements that contain data values, and containment

mappings represent mappings between the schema

objects that contain the elements mapped by value

mappings.

Value mappings are used to map one or more input-

side elements into one output-side element. The

following example captures two value mappings for

the BankTeller example. The first is a value

mapping between the Customer_ID field of Cus-

tomer and the ID field of Client. The second value

mapping represents a more complex value mapping.

Customer firstName and lastName on the Standard

Model must be combined by means of a scalar

concat() function to form Client Name on the Bank

Teller Model. Here, the scalar function is captured as

a ‘‘refinement’’ of the value mapping, and it is

assumed that concat() is a valid function in the

target transformation language. Notice the use of

variable names as parameters to the function. The

mapping model allows binding a variable name to

every path expression and using that variable name

in place of the expression.

,mappingRoot.

,input path¼‘‘stdModel.xsd’’ root
¼‘‘StandardModel’’/.

,output path¼‘‘bankTeller.xsd’’ root
¼‘‘BankTeller ’’/.

,mapping.

,input name¼ ‘‘first’’

path¼‘‘/StandardModel/Customer/Customer_ID’’/.

,output path¼‘‘/BankTeller/Client/ID’’/.

,/mapping.

,mapping.

,input name¼‘‘first ’’

path¼‘‘/StandardModel/Customer/firstName’’/.

,input name¼‘‘last’’
path¼‘‘/StandartModel/Customer/lastName’’/.

,output path¼‘‘/BankTeller/Client/Name’’/.

,function value¼‘‘concat ($first, $last)’’/.

,/mapping.

,/mappingRoot.

The transformation semantics of a value mapping in

isolation are unambiguous. However, multiple value

mappings taken together can introduce ambiguity.

In the example just presented, one interpretation

would apply both value mappings simultaneously to

produce one target Client record for every

Customer record. Another interpretation would

create a new Client record for every Customer_ID

value and for every concatenation of first name and

last name. This interpretation represents an outer

union of the mapped values; half of the Client

records would only have a value for the ID element,

and the other half would only have a value for the

Name element. Unambiguous relationships are espe-

cially important for code generation, so that the

correct transformation code can be generated. We

use containment mappings to express such unam-

biguous relationships.

Containment mappings provide the context under

which set value mappings operate, and they are

defined between the schema elements that contain

the elements used in value mappings. (We note that

containment mappings are an extension of the Clio

logical mappings,
13

which have also been studied

from a theoretical perspective
20

under the name

source-to-target tuple dependencies.) Containment

mappings represent logical constraints that all

source data instances and all target data instances

must satisfy and have the following form:

forall (source-side binding of variables)

where (source-side predicate)

exists (target-side binding of variables)

where (target-side predicate)

satisfies (value mappings and other containment

mappings)
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The forall clause contains one or more variables

bound to sequences of values from the source side

using XPath expressions. An optional predicate that

uses the source side variables can be added after the

forall clause to filter the sequence member that

participates in the mapping. Similarly, the exists

clause contains a list of target-side bindings. The

target-side predicate allows for the specification of

target-side conditions that must hold in the map-

ping. Finally, the satisfies clause contains a set of

contained value mappings.

Of the two possible interpretations for the value

mappings listed earlier, the former is the more likely

as it maintains the association of source data to the

data produced in the target:

forall x0 2 /StandardModel/Cutomer
exists y0 2 /BankTeller/Client
satisfies (y0/ID ¼ x0/Customer_ID and y0/Name ¼

concat (x0/firstName, x0/lastname))

This constraint can be read as follows: for all

Customer tuples (x0), there will be at least one tuple

in Client (y0) for which its ID field contains the

same value as the Customer_ID field of the Customer

tuple, and for which its Name field is composed by

concatenating the firstName and lastName fields of

the Customer tuple. This interpretation is captured

in the mapping model in Figure 7, where the

variables $x0 and $y0 are used to refer to the

repeating elements of the models.

The MSL fragment in Figure 8 captures the complete

mapping between the Standard Model and Bank

Teller. Three repeating elements on the Standard

Model (Customer, Accounts, and Transactions)

must be joined to produce the nested Client and

Accts structure on the Bank Teller Model. All

customers should be mapped regardless of whether

they have an account (i.e., outer-join semantics),

but the Bank Teller Model should include only

accounts of type Savings or Checking.

Lines 5–16 map the top-level target structure

Client, using only data from Customer. All

Customer information will be mapped to Client,

regardless of the other conditions in the mapping,

accomplishing the outer-join semantics we wanted.

Lines 17–43 show a containment mapping nested

within the top-level containment mapping. This

mapping takes advantage of the records already

bound by the top level to express a join. In

particular, line 20 joins the source Customer record

bound to $s0 with all the records in Account for

which Customer_ID is the same. Line 21 adds

another filtering condition to select only savings or

checking accounts from the records selected from

Accounts. Lines 22–29 are the value mappings

associated with this nested mapping. Finally, lines

30–42 add another nested mapping within the

second to map the Transactions information.

This mapping model captures the complete trans-

formation of the Standard Model to the Bank Teller

Figure 7
Simple customer-to-client mapping

<mappingRoot>
  <input path=”stdModel.xsd” root=”StandardModel”/>
  <output path=”bankTeller.xsd” root=”BankTeller”/>
  <mapping>                                           <!-– containment mapping -->
    <input name=”x0” path=”/StandardModel/Customer”/> <!-- forall -->
    <output name=”y0” path=”/BankTeller/Client”/>     <!-- exists -->
    <mapping>                                         <!-- nested value mapping --> 
      <input path=”$x0/Customer_ID”/>
      <output path=”$y0/ID”/>
    </mapping>
    <mapping>                                         <!-- nested value mapping -->
      <input name=”first” path=”$x0/firstName”/>      <!-- satisfies clause -->
      <input name=”last” path=”$x0/lastName”/>
      <output path=”$y0/Name”/>
      <function value=”concat($first, $last)”/>
    </mapping>
  </mapping>
</mappingRoot>
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model, and converting it into a transformation

language, such as XQuery, is straightforward. Two

other fundamental concepts that must be captured

by the mapping model are grouping and collating.

This is particularly important in hierarchical models

like XML, where grouping of data that shares a

common parent value (or values) is naturally

captured by the hierarchy of data. A full description

of how we model these operations in our model is

beyond the scope of this paper.

Validation

As previously noted, a key design point of the

mapping model is to tolerate heterogeneity with

respect to source and target models and trans-

formation languages. The mapping semantics com-

ponent contains a validator to determine if the

Figure 8
Complete standard model to bank teller mapping

1. <mappingRoot>
2.   <input path=”stdModel.xsd” root=”StandardModel”/>
3.   <output path=”bankTeller.xsd” root=”BankTeller”/>
4.   <mapping>
5.     <input name=”s0” path=”/StandardModel/Customer”/>
6.     <output name=”t0” path=”/BankTeller/Client”/>
7.     <mapping>
8.       <input path=”$s0/Customer_ID”/>
9.       <output path=”$t0/ID”/>
10.     </mapping>
11.     <mapping>
12.       <input name=”first” path=”$s0/firstName”/>
13.       <input name=”last” path=”$s0/lastName”/>
14.       <output path=”$t0/Name”/>
15.       <function value=”concat($first, $last)”/>
16.     </mapping>
17.     <mapping>
18.       <input name=”s1” path=”/StandardModel/Accounts”/>
19.       <output name=”t1” path=”$t0/Accts”/>
20.       <condition value=”$s0/Customer_ID = $s1/Customer_ID”/>
21.       <condition value=”$s1/Account_Type=‘Savings’ or $s1/Account_type=‘Checking’”/>
22.       <mapping>
23.         <input path=”$s1/AccountID”/>
24.         <output path=”$t1/AcctID”/>
25.       </mapping>
26.       <mapping>
27.         <input path=”$s1/Account_Type”/>
28.         <output path=”$t1/AcctType”/>
29.       </mapping>
30.       <mapping>
31.         <input name=”s2” path=”/StandardModel/Transactions”/>
32.         <output name=”t2” path=”$t1/Activity”/>
33.         <condition value=”$s2/Account_ID = $s1/Account_ID”/>
34.         <mapping>
35.           <input name=”$s2/Date”/>
36.           <output name=”$t2/Date”/>
37.         </mapping>
38.         <mapping>
39.           <input name=”$s2/Amount”/>
40.           <output name=”$t2/Amount”/>
41.         </mapping>
42.       </mapping>
43.     </mapping>
44.   </mapping> 
45.  </mappingRoot>
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mapping model represents a valid transformation

with respect to the source and target models and

runtime transformation language. The validator

serves two roles. First, it provides the context in

which a mapping can be defined. Context validation

is implemented as a context-sensitive consultation

between the user interface and the validator to help

guide the user to construct correct mapping models

by providing input to the user interface with regard

to which actions are valid in a particular context.

Second, it provides instance validation, the logic to

validate a mapping as it is defined or to validate a

mapping after it has been reloaded.

The validator is customized for a given mapping

scenario by two extension points: mapping domains

and mapping policies. A mapping domain defines

valid combinations of source and target models and

transformation languages, and valid types and

expressions based on these combinations. It consists

of a registry that provides context validation to

restrict the type of models that can be mapped and

the type of transformation languages to generate,

and it provides implementations for type and

expression checkers that provide instance validation

for particular mapping combinations. RDB/

RDB!SQL, RDB/XML!SQL/XML, XML/

XML!XSLT, and XML/XML!XQuery are examples

of registry entries. A mapping domain that includes

the RDB/XML!SQL/XML registry entry, for exam-

ple, would also provide a type and expression

checker based on SQL/XML. The type checker might

verify that a date field has the appropriate cast

function to map to an integer, whereas the

expression checker might verify that a function

concat ($first, $last) is a valid SQL expression

(after the variables are replaced by column names).

A mapping policy provides context-sensitive input to

the user interface to guide a user when interactively

defining new mappings between objects. A mapping

policy specifies types of endpoints that are valid for

value or containment mappings (e.g., source ele-

ments that can appear in the forall clause and

target elements that can appear in the exists

clause), as well as refinements that are valid for a

given mapping object. For example, for XML

schemas, elements that represent repeating struc-

tures are valid endpoints for containment mappings,

whereas elements that can contain data elements are

valid endpoints for value mappings. For an RDB/

XML!SQL/XML mapping domain, column objects

are valid endpoints for value mappings, and table

objects are valid endpoints for containment map-

pings. SQL scalar functions are valid for value

mappings, and filters, joins, and aggregate functions

(including the SQL/XML functions) are valid for

containment mappings.

User interface

The user interface is a key component that allows

users to visualize, create, and modify the relation-

ships and semantics that make up a mapping. Earlier

we observed that for existing tools, mapping

visualization metaphors are either relationship

based or function based, and that relationship-based

tools typically offer a higher level of abstraction at

the expense of expressive power, while function-

based tools offer more expressive power but require

a higher degree of skill on behalf of the user.

Thus, both metaphors offer strong support for code

generation, each providing a different set of advan-

tages to the user. However, because of the higher

degree of abstraction and relationship visualization,

we believe a relationship-based metaphor is better

suited for the goals of managing complexity and

mapping as metadata. We have derived a core set of

user interface components from that metaphor, with

appropriate extension points to support heteroge-

neous source and target models, multiple trans-

formation languages, and views that render the

mapping in domain-specific metaphors (including,

for example, a function-based approach).

The user interface consists of source and target

views, a mapping view, an outline view, and a

properties view. The source and target views render

source and target models as tree views, and the

mapping view visually displays relationships be-

tween schema elements by interpreting the mapping

model. The mapping view allows users to draw or

annotate relationships with additional semantics,

such as functions, conditions, or user-defined

annotations, and provides a visual cue to denote the

presence of such annotations. The outline view

provides a more compact, text-based view of the

mappings.

Properties of source, target, and mapping objects

can be viewed and edited in the properties view. Our

architecture includes large schema support, includ-

ing features to filter elements or subtrees from the

source and target views and to hide elements that do
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not participate in the mapping. With this support,

users can work with sparse mappings involving

large schemas, which are quite common. In addi-

tion, to focus a user’s attention when visually

manipulating large and complex mappings, the user

interface includes the concept of visual partitions in

the mapping view, which filter the visualization into

logically related mapping groups. Such groups can

be automatically computed, such as containment

mappings and their nested value mappings, or

defined by users, as is provided today by Microsoft

BizTalk**.

Extensibility at the user interface is captured in three

aspects: source and target model viewers, trans-

formation language-specific editors, and additional

domain-specific views. A model viewer is a prebuilt

or custom-built renderer to display a particular kind

of model in either the source or target panel as a tree

of objects. The user interface allows such viewers to

be mixed, based on the particular mapping scenario

(for example, RDB!XML or RDB!UML). Although

extensions to the mapping model specific to the

transformation language can be specified textually

in the properties view, an optional transformation

language editor can be plugged in to build more

complex expressions. For example, for an

RDB!XML mapping configuration that generates

SQL/XML statements, the user interface can be

extended with an editor that assists a user to build

and validate SQL/XML expressions. Similarly, an

XML!XML mapping interface may include an XSLT

or XQuery expression builder. Finally, a relation-

ship-based metaphor may not be the metaphor of

choice for all mapping scenarios. The model-centric

approach makes it possible to extend (or replace)

the user interface with a domain-specific view, such

as the function-based approach described in the

section ‘‘State of the art.’’

Mapping population

The user interface enables users to create and

modify mapping information. However, as shown in

the EII scenario, manually specifying mapping

information is, at best, a tedious process and, at

worst, not possible if the relationships are not easily

identifiable. The mapping population component is

an optional interface to programmatically populate

the mapping model with relationships that may be

inferred from a variety of techniques, including

structural comparison (the source name element has

two attributes and the target cust_name element has

two attributes), data comparison (samples of data

for source element ssn and target element taxid

have overlapping values), and semantic analysis

(customer and client refer to similar concepts).

Programmatic-mapping discovery and population is

important for the goal of mapping as metadata,

particularly when integrating large and complex

schemas. Even if not all discovered relationships are

correct, they very often draw attention to where

& Mapping tools follow one of
two visual metaphors, either
highlighting relationships
between a source and target or
highlighting functional steps
required to transform a source
to a target &

models overlap. Extensibility in this component is

crucial, as very often it is possible to construct

highly accurate, domain-specific matching tech-

niques, such as algorithms that match chemistry

structures for a life-science application. Custom

discovery rules and algorithms can record inferred

relationships in the mapping model (along with

confidence values and supporting evidence), which

can then be visualized, persisted, and used for later

analysis.

The mapping population component exposes a

simple interface that takes as input a set of source

and target model elements and an existing mapping-

model instance, then returns a populated mapping

model. The mapping population interface enables

algorithms to be dynamically combined such that

independent algorithms reinforce the results of each

other. For example, semantic-name matching might

suggest that customer_taxid and client_ssn are

similar concepts, and a data signature analysis may

confirm that the data in both columns follows the

same pattern. Alternatively, an edit-distance analy-

sis may suggest a strong correlation between

eaddress and address, but a regular expression

analysis of the data shows two very different

patterns (e-mail addresses as opposed to postal

addresses).
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Our implementation supports a set of algorithms

applicable to many domains. These include a

dependency extraction technique,
22

five metric

algorithms, and two matching algorithms. The

metrics include edit-distance name similarity, the-

saurus-based semantic name matching,
23

data sig-

nature comparison,
16

and data distribution

analysis.
24

The matching algorithms include a

simplistic greedy approach and a more measured

‘‘stable marriage’’ approach.
25

Code generation

Code generation is the process of rendering a

mapping-model instance to a target transformation

language. It is accomplished with two components:

a navigator and a generator. The navigator visits the

target schema model, using the canonical represen-

tation created and maintained by the model man-

ager. For each target structure to be generated, the

navigator produces the set of mapping-model

objects required to build the structure and passes it

to the generator. The generator then outputs the

corresponding transformation logic in the appropri-

ate language. The mapping architecture provides a

common navigator and allows for diverse generators

to attach themselves to produce the transformation

code. Our implementation of this architecture

includes generators for XQuery, XSLT, SQL, and

SQL/XML.

For example, consider an XQuery generator. Figure

1 shows an XQuery that is generated from the

StandardModel to BankTeller mapping of Figure 2.

For each target schema object associated with a

containment mapping, the code generator creates a

for loop over the source to retrieve the records that

will be used to construct the target element. Filters

and join conditions associated with the containment

mapping are placed in the corresponding where

clause of the for loop. Target schema objects nested

within the containment mapping are either gener-

ated by value mappings or other containment

mappings. Constructors for the elements are placed

in the for loop for those generated by value

mappings, and nested for loops are added to the

for loop for those generated by other containment

mappings.

Customizing XML mapping architecture

In this section, we show how to customize a

mapping tool, based on this architecture, to support

the EII and SOA scenarios. Note the overlap between

the EII and SOA configurations—by sharing a

common architecture, both scenarios benefit from

common source and target viewers, mapping

population, and a shared mapping model that can be

transformed into SQL/XML or XSLT statements.

As shown in Table 1, a custom instance of a

mapping tool can be dynamically customized for

each scenario through a configuration (specified in a

file). A configuration is made up of a source/target

registry that defines the valid source/target!trans-

formation language combinations and a set of

packages that provide the implementation for the

extension points.

Table 1 shows the source/target registries for the EII

and SOA scenarios. The EII scenario shows four

valid source and target combinations: RDB/RDB,

RDB/UML, RDB/XML, and UML/XML, with target

languages of SQL and SQL/XML. The SOA scenario

adds XML/XML and WSDL/WSDL combinations

and, in both cases, the target language is assumed to

be XSLT.

The user interface extensions include existing model

viewers for RDB, UML, XML, and WSDL. The XML

viewer can be shared for both the EII and SOA

scenarios. The EII configuration includes a visual

SQL expression builder to assist the user to build

SQL-compatible mapping refinements, and the SOA

configuration includes a visual XQuery expression

builder for XSLT-compatible refinements. Both

scenarios benefit from an implementation of dis-

covery-assisted mapping-model population based on

semantic name matching.
23

The EII scenario requires model managers for RDB,

UML, and XML Schema. The SOA scenario can share

the XML Schema model manager and also requires a

WSDL model manager.

Recall that a mapping domain is composed of a

source/target registry (defined in the configuration

file) and type and expression checkers. We were

able to take advantage of existing parsers for SQL

and SQL/XML for the EII mapping domain, and

existing XSLT parsers for the SOA mapping domain

for type and expression checking by translating

mapping objects into small code fragments and then

invoking the appropriate parser for validation. For
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example, consider the following refinement on a

value mapping for the EII scenario:

concat ($customer/firstname, $customer/

lastname)

The RDB model manager resolves $customer/

firstName and $customer/lastName expressions to

be the firstName and lastName columns of the

Customer. The SQL (and SQL/XML) validator

converts the refinement on the mapping to the

following query:

SELECT concat (C.firstName, C.lastName) FROM

StandardModel.Customer C,

This query fragment is then passed to the SQL parser

for validation.

The RDB mapping policy is straightforward, speci-

fying that columns are valid endpoints for value

mappings and table objects are valid endpoints for

containment mappings. The XML Schema mapping

policy is more complex. Valid containment-mapping

endpoints are repeatable XML elements, and any

XML Schema object that represents a data value is a

valid value-mapping endpoint. This includes XML

attributes and XML elements with primitive data

types. However, this also includes XML elements

with complex types that allow mixed content—

meaning that instances of this XML element can

have text child nodes. For example, consider this

XML fragment:

,part.,id.x003,/id.notebook,/part..

Here part has a complex type because it can contain

id elements within. But part also allows mixed

content, in this case, the notebook text within.

These text nodes are mappable data values and

should be allowed as valid value-mapping end-

points.

The SOA scenario requires a code generator for

XSLT. The EII scenario requires code generators for

SQL and SQL/XML. SQL/XML is a superset of SQL

with additional functions to tag relational data as

either XML elements or XML attributes and to

aggregate multiple XML elements into a sequence of

elements. As a result, it is possible to use one code

generator to generate both SQL and SQL/XML.

Table 1 Mapping configuration for EII and SOA

EII Configuration SOA Configuration

Source/Target Registry RDB/RDB!SQL
RDB/UML!SQL
RDB/XML!SQL/XML
UML/XML!SQL/XML

XML/XML!XSLT
WSDL/WSDL!XSLT

User Interface com.ibm.core.rdb.viewer
com.ibm.core.uml.viewer
com.ibm.core.xml.viewer�

com.ibm.core.rdb.exp

com.ibm.core.xml.viewer�

com.ibm.core.wsdl.viewer
com.ibm.core.xslt.exp

Population com.ibm.ext.discovery.semname� com.ibm.ext.discovery.semname�

Semantics Model Manager com.ibm.ext.rdb.modelmgr
com.ibm.ext.uml.modelmgr
com.ibm.ext.xml.modelmgr�

com.ibm.ext.xml.modelmgr�

com.ibm.ext.wsdl.modelmgr

Mapping Domain com.ibm.ext.rdbumlxml.mapdomain com.ibm.ext.xml.mapdomain
com.ibm.ext.wsdl.mapdomain

Mapping Policy com.ibm.ext.rdb.mappolicy
com.ibm.ext.uml.mappoIicy
com.ibm.ext.xml.mappolicy�

com.ibm.ext.xml.mappolicy�

com.ibm.ext.wsdl.mappolicy

Code Generation com.ibm.ext.sqlxml.gen com.ibm.ext.xquery.gen
�Indicates packages that are shared between the two components
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RELATED WORK AND REMAINING CHALLENGES
A number of new challenges for XML mapping

technology arise from the natural progression of

XML to a mature technology. The following are

important related or open issues: schema matching;

round tripping and dependency extraction (e.g.,

between mappings and generated artifacts); schema

evolution, including migration, adaptation, and

mapping inversion; sequential and parallel mapping

composition; and schema integration.

Schema matching—Schema matching is the auto-

matic discovery of correspondences between het-

erogeneous data sources. Examples of schema

matching research include References 16 and 26–33.

Round tripping and dependency extraction—The

common architecture proposed earlier provides a

solution to quickly generate a mapping between two

formats and render it as executable code. The

generated executable code can be further modified

by humans (for example, XSLT experts) or other

applications, and such modifications can happen

concurrently with edits on the mapping model that

created the artifact. Round tripping, or synchroniz-

ing these modifications to keep the mapping model

synchronous with the runtime code, is an important

open question.

We referred earlier to dependency extraction, or

extracting a mapping specification from existing

legacy transformation code (e.g., XSLT, SQL,

COBOL). Initial results
22

are very promising, but a

number of important challenges remain. In partic-

ular, our mapping specification is not a general-

purpose transformation language, and thus, ex-

pressiveness problems arise when attempting to

decode expressions in Turing-complete languages.

Schema evolution—migration, adaptation, and in-

version—Changes to the source and target struc-

tures, or schema evolution, is often inevitable,

particularly with XML data, where it is easy to

change the way data is structured or tagged. Schema

evolution is almost always associated with schema

migration, which involves mapping data that con-

forms to one version of a schema to a new (evolved)

schema. The XML mapping technology discussed in

this paper facilitates schema migration.

A second challenge in schema evolution is to devise

methods to automatically or semiautomatically

maintain and adapt mappings and their corre-

sponding executable transformation code in the face

of schema evolution. Mapping adaptation is the

process of migrating those existing mappings and

the corresponding generated executable code into

new mappings and code that refer to new or

changed schema elements and preserve as much of

the logic in the old mapping as possible. Velegrakis,

Miller, and Popa
17

study mapping adaptation when

an edit script that captures the changes in the source

or target schema is available. In this approach,

incremental changes are made to the mapping for

each change in the schemas. In the more recent

work of Yu and Popa,
18

an edit script is not needed

to adapt mappings. Instead, a new mapping is

created (discovered or given by the user) between

the old version and the new version of the evolved

schemas. This evolved mapping is composed with

the previous mapping to derive the adapted

mapping.

Mapping inversion refers to generating a mapping

whose transformation semantics is the inverse of a

given mapping. Ideally, applying the inverse map-

ping should yield back the original data. Mapping

inversion is a fundamental challenge that typically

implies more than reversing the direction of the

mapping. For example, a mapping that involves the

union of two data sets cannot be inverted without

loss of information unless additional bookkeeping is

kept at runtime to capture data lineage. For those

cases in which information loss may be acceptable,

defining a correctness criterion for the inverse that

reflects the minimal acceptable information loss is

an open problem and would be quite useful.

Mapping composition (sequential and parallel)—As

illustrated by our earlier scenarios, sequential and

parallel mapping composition are important chal-

lenges to address. Sequential composition refers to

the problem of transitively combining two succes-

sive mappings (from a schema S1 to a schema S2,

and from the schema S2 to a schema S3) into a

single mapping (from S1 to S3) that, in terms of

transforming the data, has the same effect. Such

composition can eliminate intermediate steps in a

transformation process, for example, such as occurs

when the custom views are created from the

standard model in the EII example of Figure 2.

Sequential composition also enables mapping reuse.

For example, mappings are frequently established

between two logical models and later applied to two
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physical schemas that are not identical to the logical

models, but do themselves have mappings to or

from the logical models.

Parallel composition refers to deriving an aggregate

map from multiple sources into a common target,

based on a set of existing individual mappings from

each source to the target. A common goal of such an

aggregate map is to merge data from multiple

sources with overlapping information. Note that this

requires more than just a simple union of the

mappings; parallel composition must typically take

into account additional information relating the

sources, such as intersource constraints, or more

generally, intersource mappings and additional

properties of the target schema, such as key or

functional dependencies.

Preliminary solutions on sequential mapping com-

position and mapping adaptation already exist for a

subset of mapping expressions.
17,18,21,34

It remains

to be seen how those solutions can be extended to

more general cases and whether they can be made

fully scalable and usable in industrial-strength tools.

The work of Nash et al.
35

focuses on composition in

a mapping language that is more general (it allows

for bidirectional mappings), but, at the same time,

simpler than the proposed mapping model as it only

covers the relational case. Their results so far are

mostly theoretical. Parallel composition is an open

problem.

Schema integration—Schema integration often ap-

pears when there is no a priori target schema, and

instead, such a representation must be derived from

the sources. Ideally, the target schema should be

able to represent all the information from the source

schemas with minimal duplication (i.e., elements

that come from different source schemas but

represent the same data should be merged). Such

duplicate elimination is nontrivial, as it must take

into account the complex relationships (mappings or

constraints) that may exist at the data level between

the source schemas. Most schema integration work

has focused on using syntactic correspondences

between the source schemas (e.g., see Reference

36). A proposal for using mappings among source

schemas to construct a target schema appears in the

metadata model management framework of Bern-

stein.
15

An XML schema integration system is

described by Sakamuri et al.
37

SUMMARY

In this paper, we discussed how the importance of

mapping and transformation has increased as

enterprises select XML as their underlying technol-

ogy for integration. We described two scenarios that

demonstrate how XML mapping is used to facilitate

integration, and we drew from these scenarios the

requirements for mapping that go beyond what is

available today. A key insight derived from the

& The mapping model consists
of two components: an
in-memory object model that
can be visualized and interpreted
and a human-readable
serialization XML format, called
the Mapping Specification
Language &

discussion is that enterprise integration applications

are typically multistep processes built from a variety

of existing components with overlapping function,

and a majority of development time is spent trying

to find those components and identify and exploit

the relevant overlap as a means for integration. We

observed that XML mapping can help to automate

this process by capturing, recording, and reusing

metadata about the integration activity itself, and we

described an extensible model-based architecture

that evolves the current state-of-the-art mapping

tools from functioning primarily as point-in-time

code-assistance tools to support the equally impor-

tant goals of reusability and mapping as metadata.

Finally, we noted that XML mapping is a technology

that falls into a broader research context that

intersects both the XML and integration topics. We

identified a rich set of challenges that remain in

schema evolution, composition, and schema inte-

gration, and we have demonstrated that the model-

based architecture proposed here can be used as a

platform to further explore these areas.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc., Sun Microsystems Inc., Progress
Software Corporation, or Microsoft Corporation in the United
States, other countries, or both.
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DISCLAIMER
The examples in this paper are provided on an as-is

basis. They may be copied and modified in any form

without payment to IBM for the purposes of designing

and developing application programs. These examples

have been tested, but they have not been thoroughly

tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or

function of these examples in your particular

environment. Use these examples as models for your

own situations.
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