
A Framework for Integrating Business Processes and Business Requirements∗

Raman Kazhamiakin Marco Pistore
DIT, University of Trento

Via Sommarive 14, I-38050, Trento, Italy
{raman,pistore}@dit.unitn.it

Marco Roveri
ITC-irst

Via Sommarive 18, I-38050, Trento, Italy
roveri@irst.itc.it

Abstract

Service-oriented architectures and Web service infras-
tructure provide the ideal framework for interconnecting
organizations and for defining distributed business applica-
tions. The possibility to exploit business process definition
and execution languages is particularly relevant for captur-
ing the process-oriented nature of these applications. How-
ever, business processes by themselves are not enough to
manage the changes and to allow an organization to con-
tinuously adapt its business model to the typical needs of
distributed applications. To achieve this flexibility, it is of
uttermost importance to link the business processes to the
organizational strategy and to the business goals that moti-
vate the need of these processes.

In this paper we propose a framework for representing
strategies and goals of an organization in terms of business
requirements. The framework allows to describe how an or-
ganizational strategy is operationalized into activities and
implemented by business processes. It also allows to rep-
resent the assumptions on the interactions between the dif-
ferent business applications. Finally, this framework allows
for the usage of formal analysis techniques, in particular
Model Checking, to pinpoint problems and to identify pos-
sible solutions in this domain.

1. Introduction

The growing use of information technology and the high
level of dynamics and interoperability introduced by the In-
ternet provide new ways for interconnecting enterprises and
customers that where not possible in the past. In particular,
Web service technology is rapidly emerging as one of the
most practical approaches for the integration of customers’,
vendors’, and business partners’ applications. The number
of individual Web services made available by companies is
continuously growing, but the real value to an organization
∗This work has been supported in part by the FIRB-MIUR project

RBNE0195K5 “Astro”.

comes only when these companies are able to connect ser-
vices together. This forces transaction and integration costs
to be driven down and makes the traditional static hierarchi-
cal structure less attractive both from a strategic and from an
economical perspectives. Organizations should be consid-
ered in terms of business processes rather than functions, in-
tegrating activities in cross-functional and cross-enterprise
chains [16]. This integration is made more difficult by the
fact that, while aiming to work together and to provide inter-
enterprise business applications, usually companies do not
want to uncover the internal structure of their business pro-
cesses to each other. Moreover, they want to keep the abil-
ity to rethink and reorganize their business processes and
to modify accordingly the implementation in order to adapt
their strategy to changes and innovations.

Web services provide the basic technology for obtaining
the loosely coupled integration required by business pro-
cesses. Indeed business process description languages like
BPEL4WS [1] provide means to describe services with-
out necessarily revealing the internal structure of the pro-
cesses. However, in order to be effectively used for compos-
ing business processes, the technological infrastructure pro-
vided by Web services needs to be enriched with tools and
methodologies that support the development of this compo-
sition and that permit to manage the changes and adapta-
tions of business models and of business processes. This in-
troduces the necessity of determining the implication of the
business strategy and goals changes in the software system.
To this purpose, business goals and business requirements
need to be made explicit in the business process model. A
“strategic” description needs to be provided of the differ-
ent actors in the business domain with their goals and with
their mutual dependencies and expectations. Furthermore,
a tight integration of the business requirements and of the
business process specification is necessary. This permits re-
quirements traceability, i.e., to see how the modifications of
requirements or process specifications affect each other.

One of the major prerequisites for an effective process
integration is reliability. The process definition that is ob-
tained from the business requirements model should be con-

sistent with the requirements and with the goals it aims to
achieve. And, whenever processes of different partners are
composed into a new business application process, the com-
position should respect the goals and constraints of every
participant. In other words, the business application should
match the business requirements model. Automatic formal
analysis and verification tools are necessary to verify this
matching and to check that this match is maintained when
requirements or processes change.

In this work, we describe a framework for the business
process requirements modeling that we are currently defin-
ing. The design process starts from a description of the
strategic goals and needs of an organization. These are re-
fined and operationalized into tasks and activities, which are
then transformed in turn into business processes and Web
services. Formal annotations are used at all levels to define
constraints to business requirements and to business process
models. For modeling business requirements we exploit
the Tropos software development methodology [3]. Tropos
provides the notations to capture the business requirements
of the participants in the domain, their mutual dependencies
and expectations. We also exploit the formal counterpart of
Tropos, the Formal Tropos language [9], that provides rich
notations for the definition of constraints and properties of
the modeled domain, and that is amenable for formal verifi-
cation. Tropos and Formal Tropos are extended to target the
specific aspects of Web services technology. In particular,
to deal with business processes, BPEL4WS specifications
are linked to the requirements models.

The paper is organized as follows. In Section 2 we de-
scribe the business process modeling capabilities offered by
Web services and discuss the necessity to explicitly intro-
duce requirements and to integrate them with the processes.
In Section 3 we show how the business process require-
ments can be modeled in Tropos and how these require-
ments specifications may be presented formally. Section 4
describes the way the requirements models are integrated
with business process models and specifications. Formal
analysis and verification of the requirements and process
models is described in Section 5. We conclude the paper
with a briefly review of related works and with some re-
marks on future work.

2. Business Processes and Business Require-
ments

2.1. Business Processes

The description of the structure and behavior of the dif-
ferent business activities within an organization has been
deeply investigated, for instance in the framework of busi-
ness process modeling. However, the integration of busi-

ness processes that are distributed among different organi-
zations is still a challenging problem.

Web services are an emerging technology for building
complex distributed systems focusing on interoperability,
support for efficient integration of distributed processes, and
uniform representation of applications. They allow compa-
nies to describe the external structure of their processes and
how they can be invoked and composed. Web service sup-
port the interactions among the different partners by provid-
ing a model of synchronous or asynchronous exchange of
messages. These exchanges of messages can be composed
into longer business interactions by defining protocols con-
straining the behavior of all partners.

The terms orchestration and choreography are often used
to refer to the two key aspects of process composition [14].
In orchestration, the composition is considered from the
perspective of one of the business parties. The focus is
on the interaction that the business process under consid-
eration performs with internal and external Web services in
order to carry out its task. Orchestration is usually private
to the business party, since it contains reserved information
on the specific way a given process is carried out.Chore-
ography, on the other hand, describes the interactions for a
global, neutral perspective, in terms of valid conversations
or protocols among the different parties. Choreography is
usually public, since it defined the common rules that define
a valid composition of the distributed business processes in
the business domain.

Web services have developed different languages
for orchestration and choreography (BPEL4WS, WSFL,
WSCI. . .). Among them, BPEL4WS [1] is quickly emerg-
ing as the language of choice for the description of pro-
cess interactions. BPEL4WS provides core concepts for
the definition of business process in an implementation-
independent way. It allows both for the definition of in-
ternal business processes and for describing and publishing
the external business protocol that defines the behavior of
the interaction. Therefore, BPEL4WS permits to describe
both the orchestration and the choreography of a business
domain with an uniform set of concepts and notations.

2.2. Business Requirements

While developing distributed business services, the de-
signers usually focus on the “how”, that is on the way a busi-
ness process is implemented by means of standard business
process description languages. However, these languages
are not able to describe the business goals and strategies of
an organization, its expectations over external services, and
the links existing between these goals and expectations and
the corresponding business processes.

By business requirements we mean all those aspects of
the description of business process that are related to the

strategy and the rationale of on organization (the “why” and
the “what”), and that precede and motivate the definition of
specific processes (the “how”).

Similarly to what happens for business processes, also in
business requirements we can distinguish an orchestration
and a choreography perspective. In theorchestrationper-
spective, the point of view of a particular business party is
taken, its strategic goals are described, the definition of the
business processes needed to achieve these goals is made
evident along with the decision of what services to imple-
ment internally and what external services to exploit. The
requirements from thechoreographyperspective, on the
other hand, aim to describe the interaction opportunities that
are present in the business domains. These opportunities
are defined in terms of possible matches between the ser-
vices required by certain actors and the services provided
by other actors. Along with these intent/offer matches, the
choreographical business requirements also define the busi-
ness rules of the domain, namely the shared assumptions
and constraints on the correct interactions inside the busi-
ness domains. Orchestration is supposed to be private to
the party, as it contains information on the business strat-
egy that the party may not want to disclose to external or-
ganizations, while choreography is supposed to be publicly
available to all participants. Correct business processes of
a party should respect goals and constraints both of its own
orchestration and of the shared choreography of the busi-
ness domain.

2.3. A Case-Study

We consider a case-study in the field of public welfare,
extracted from a larger domain concerning the local gov-
ernment of Trentino (Italy). In the case-study we consider a
senior citizen that aims at being assisted, e.g., receiving ser-
vices like transportation or meals at home. The assistance
to citizens is provided by a Health-care Agency, that is run
by the Local Government, and that aims at providing fair
assistance to citizens. The Health-care Agency depends on
external providers for the actual delivery of the requested
services. The financial aspects of the Local Government
are handled by a Bank that is in charge of paying the ser-
vice providers and of asking the citizen to cover part of the
costs of the used services. The interaction among the dif-
ferent parties is required to happen via Web services. The
business goal of the citizen consists in receiving assistance,
while the Health-care Agency is willing to provide assis-
tance only to citizen that satisfy given eligibility criteria.

3. Business Requirements Modeling in Tropos

Tropos is a goal-driven, agent-oriented software devel-
opment methodology that aims to cover all the phases of the

Citizen

Service
ProviderBank

Health-
care

Agency
Being

Assisted

Receive
Assistance

Payment

Private Fee

Balance

Provide
Service

Being Paid

Provide Fair
Assistance

Provide
ServicePublic Fee

Figure 1. High level requirements model.

development process starting from early requirements [3].
It is founded on the premise that during early requirements
it is important to understand and model the strategic aspects
underlying the organizational setting within which the soft-
ware system will eventually function. By understanding
these strategic aspects one can better identify the motiva-
tions for the software system and the role that it will play
inside the organizational setting. The methodology allows
for the incremental refinement of the strategic models via
goal/task decomposition and operationalization both at the
informal and formal level.

In this paper we show that (a suitable extension of) Tro-
pos can be used to define business requirements and to inte-
grate them with the corresponding business processes. We
will use the health-care assistance case-study to illustrate
the approach.

3.1. Tropos for Web Services

Figure 1 is a Tropos diagram that describe theactors
(circles) participating to the case-study, and their strategic
high-levelgoals (the ovals attached to the actors). For in-
stance, in the diagram we have theCitizen that aims at being
assisted; theHealthcareAgency that aims at providing a fair
assistance to the citizens; theServiceProvider which goal is
to provide the requested services; and theBank which han-
dles the government’s finances.

Tropos allows for the description of the interactions
among the different parties of the domain at the strategic
level relying on the intent/offer matching mechanism repre-
sented in the diagram by means ofdependencies(the ovals
linked to two different actors). For instance, the Citizen de-
pends on the Health-care Agency for being assisted, and this
is formulated in the model with dependencyReceiveAssis-
tance from Citizen to HealthcareAgency. This diagram can
be seen as a very high-level choreography representation of
the requirements of our case-study.

Starting from this high-level view of the organizational

CitizenBeing
Assisted

Receive
Service

Do Request

Initial
Request

Provide
Information

Wait
Answer

Pay

Quality
Service

Health-
care

Agency

Receive
Assistance

Provide Fair
Assistance

Receive
Request

Ask
Additional

Info

Provide
Answer

Request

Info
Request

Info

Response

Activity Level

Strategic Level

Message Level

Figure 2. Requirements model refinement.

or business system, Tropos proceeds with an incremental
refinement process (see Figure 2). This refinement starts
with a goal analysis, where the high level goals of one of
the actors are refined into sub-goals and eventually opera-
tionalized into tasks. In our case-study, the goal analysis
is very simple: theCitizen refines the goalBeingAssisted
into the two tasks (hexagons)DoRequest andPay, the goal
ReceiveService, and the soft-goal (cloud)QualityService.
The tasks are supposed to be implemented by software mod-
ules, while the goals that remain in the model after the goal
analysis represent activities that are not carried out elec-
tronically (e.g., the assistance services are physically deliv-
ered to the citizen). Finally, soft-goals are used to describe
non-functional requirements, with no clear-cut criteria as to
when they are achieved (e.g., the citizen has some require-
ments on the quality of the services delivered to him).

The goal analysis phase is followed by a task refinement
phase, where the high-level tasks are decomposed into sub-
tasks. In Figure 2, taskDoRequest is further refined intoIni-
tialRequest, ProvideInformation, WaitAnswer. In this simple
case, the three sub-tasks are composed sequentially. Other
forms of task decomposition are also possible, correspond-
ing to the other typical ways of combining activities in ac-

tivity diagrams (parallel composition, choice, iteration...).
The task decomposition procedure ends once we have

identified all basic tasks that define the business process.
As a last step in the definition of business requirements, we
associate to the basic tasks the messages that describe the
basic interactions among actors. For instance, taskInitial-
Request requires to send a messageRequest to theHealth-
careAgency. This message is received and processed by the
task ReceiveRequest of the HealthcareAgency. The task
AskAdditionalInfo of theHealthcareAgency is implemented
by sending a messageInfoRequest to theCitizen which re-
ceives and processes it within taskProvideInformation and
responds with anInfo message. Once sufficient information
has been gathered, theHealthcareAgency sends aResponse
message to theCitizen.

The steps of the refinement are represented in the Fig-
ure 2 as three levels: a strategic level, an activity level and a
message level. All these levels are part of the requirements
model, in the sense that they define different aspects of the
requirements a valid implementation is supposed to respect.

We remark that Figure 2 represents the point of view of
the Citizen, therefore it can be seen as an “orchestration”
requirements diagram. Clearly, the “internal” refinement

done for goalBeingAssisted has to take into account and
to reflect the “contract” that governs the way the assistance
is provided to theCitizen by theHealthcareAgency (and by
the other actors of the diagram). Indeed, the diagram in Fig-
ure 2 shows also the links that exist between theCitizen and
theHealthcareAgency, both at the goal level and at the mes-
sage level. However, no description of the internal structur-
ing of theHealthcareAgency is represented in the diagram,
since this information is not available to theCitizen.

It is worth to be noticed that in this example we have
adopted a top-down strategy for transforming high-level
goals into interactions. Other strategies, e.g., a bottom-up
approach from the messages to the goals, or a middle-out
approach starting from the activities, are also possible in
this framework.

3.2. Formal Business Requirements Specification

The Tropos methodology allows for extending the Tro-
pos diagrams with formal annotations expressed in Formal
Tropos (hereafter FT). The FT annotations specify the valid
behaviors and the relations among the different actors, de-
pendencies, goals, tasks and messages in the model. At the
strategic level the FT annotations specify the conditions on
goal creation and fulfillment, and assume/guarantee condi-
tions on delegations. At the activity level, they define pre-
and post-conditions on tasks and sub-tasks. Even more im-
portant, FT annotations allow to link these two levels and
the underlying message level. The key advantage of FT
with respect to other approaches is that it defines the dy-
namic aspects of a model and supports its formal verifica-
tion already at the requirements level, without requiring an
operationalization of the specification, e.g., into BPEL4WS
processes. A precise definition of FT and of its semantics
can be found in [9]. Here we present the most relevant as-
pects of the language based on the case-study. An excerpt
of the FT annotations associated to theDoRequest task can
be found in Figure 3.

FT gives a description of the different objects in the mod-
eled domain, which is similar to a class declaration. In
particular, a list of attributes is associated to each of these
classes. Each attribute has asort which can be either prim-
itive (boolean, integer. . .) or can be a reference to other
class. Some special attributes are associated to each kind of
class in the FT specification. Goals and tasks are associated
to the corresponding actor with the special attributeActor .
Similarly, DependerandDependeeattributes of dependen-
cies represent the two parties involved in a delegation rela-
tionship. AttributeSuper for goals and tasks denotes the
parent goal or task.

An important aspect of FT is its focus on the conditions
for the fulfillment of goals and tasks. These are character-
ized by aMode, which declares the modality of their ful-

fillment. The two most common modalities areachieve
(which means that the actor expects to reach a state where,
e.g., the goal has been fulfilled) andmaintain (which means
that the fulfillment condition has to be continuously main-
tained). For instance, dependencyReceiveAssistance is of
type maintain, to capture the fact that this “contract” be-
tween citizen and health-care agency has to be maintained
over time. On the other hand, taskDoRequest (as most of
the tasks) is of type achieve, since the citizen aims at reach-
ing a state where this task is terminated.

Behavioral aspects of the objects in the model and re-
lations among them are annotated in the FT specifications
as constraints. They allow to capture the conditions on the
goals creation and fulfillment and pre- and post-conditions
on tasks and sub-tasks.Creation constraints define con-
ditions that should be satisfied when a new instance of a
class is created. In the case of goals and tasks, the creation
is interpreted as the moment when the associated actor be-
gins to desire the goal or to perform the task.Fulfillment
constraints should hold whenever a goal is achieved or a
task is completed. Creation and fulfillment constraints are
further distinguished as sufficient conditions (keywordtrig-
ger), necessary conditions (keywordcondition), and neces-
sary and sufficient conditions (keyworddefinition).

In FT, constraints are described with formulas in a typed
first-order linear-time temporal logic. Besides the stan-
dard boolean and relational operators, the logic provides the
quantifiers∀ and∃, which range over all the instances of a
given class, and a standard set of linear-time temporal op-
erators. The latter include operatorX, which defines a con-
dition that has to hold in the next state of the evolution of
the system, operatorF, which defines a condition that has to
hold eventually in the future, and operatorG, which defines
a condition that has to hold in all future states.

In the FT specification of Figure 3, the definitions of task
DoRequest and its subtasks model the life-cycle of the ac-
tivity. For instance, the fulfillment definition ofProvideIn-
formation specifies that this task aims to send an information
message in reply of every incoming information request and
it is fulfilled if all information requests have been answered.
TheDoRequest task is considered to be fulfilled whenever
the response message is received (i.e., theWaitResponse
task is fulfilled) and the value of the result attribute corre-
sponds to the one contained in the message.

Although the FT annotations are very expressive, in the
typical cases only a limited amount of the expressive power
of FT is actually used. For instance, pre-/post-conditions
are typically propositional. However, in some cases it is
useful to have the possibility of expressing more complex
conditions. for instance, in the case of the post-condition of
the ProvideInformation task we use temporal operatorG to
specify that this task can only be considered fulfilled once
all information requests have been processed. This high-

CitizenBeing
Assisted

Receive
Service

Do Request

Initial
Request

Provide
Information

Wait
Answer

Pay

Quality
Service

Receive
Assistance

Request

Info
Request

Info

Response

Goal Dependency ReceiveAssistance Mode maintain
Depender Citizen Dependee HealthcareAgency
Fulfillment condition ∀ dr: DoRequest (

(dr.actor = depender ∧ Fulfilled (dr) ∧ dr.result) →
F ∃ rs: ReceiveService (rs.actor =depender ∧ Fulfilled (rs)))

Task DoRequest Mode achieve
Super BeingAssisted Actor Citizen
Attribute result:boolean
Fulfillment definition
∃ wa:WaitAnswer(wa.super = self ∧

Fulfilled (wa) ∧ (result ↔ wa.result))

Task InitialRequest Mode achieve
Super DoRequest Actor Citizen

Task ProvideInformation Mode achieve
Super DoRequest Actor Citizen
Fulfillment definition

G (∀ ir: InfoRequest(Received (ir) → ∃ i: Info(Sent (i)))

Task WaitAnswer Mode achieve
Super DoRequest Actor Citizen
Attribute result:boolean
Fulfillment definition
∃ r:Response(Received (r) ∧ (result ↔ r.result))

Figure 3. Formal Tropos specification.

level condition is appropriate for the requirements model
even if a specific mechanism will need to be used in the
implementation to actually check when information request
messages are ended (see Section 4). We remark that some
temporal constraints are implicit in the semantics of FT and
do not need to appear explicitly as annotations. For in-
stance, an implicit creation constraint for each sub-goal is
that the parent goal has not yet been fulfilled — if the goal
has been fulfilled there is no reason to create the sub-goal.
Also the order in which the sub-tasks of a given composed
task are invoked is implicit in the FT semantics.

4. Integrating Business Requirements and
Business Processes

The Web service business process specification may be
easily derived from the business requirements model. The
FT model already contains several pieces of information
that can be exploited to generate a BPEL4WS specifica-
tion. For instance, it is possible to automatically generate
the definition of messages, ports, and services for the busi-
ness domains — these elements define the WSDL document
associated to the BPEL4WS specification. The description
of the process model has to be completed by defining the
body of the business process corresponding to the task. In
our framework, this is achieved by associating to the task

a business process defined in the BPEL4WS language. For
instance, the business process corresponding to the task of
submitting a request is described by the BPEL4WS specifi-
cation in Figure 4.

Besides theresult variable, which is already present
in the formal requirements specification, the process con-
tains additional variableswaitResponse, vRequest, vIn-
foRequest, vInfo, andvResponse. The process behaves as
follows. First, an initialization step is performed, during
which the variablewaitResponse is set to true, and the mes-
sageRequest is prepared by setting itsneed field. TheRe-
quest message is sent in the following〈invoke 〉 command.

In order to fulfill the requirement that all incoming in-
formation requests should be satisfied until an answer has
been received by the health-care agency, a〈while 〉 loop is
entered. Its body is repeated until variablewaitResponse
becomes false. The body of the loop consists of a〈pick 〉
instruction which suspends the execution of the process un-
til a InfoRequest or aResponse message is received. Every
incoming information request, arrived with aInfoRequest
message, is answered with a correspondingInfo message.
The emittedInfo message refers to thequery contained in
the receivedInfoRequest message. If aResponse message
is received, then theresult variable of the process is set to
reflect theresult field of the received message. When this
message is received, the citizen does not expect any other

<sequence name="DoRequestBody">
<assign name="Initialization"

event=" Create ir:InitialRequest(ir.super=self) ">
<copy>

<from expression="true()"/>
<to variable="waitResponse"/>

</copy>
</assign>
<invoke operation="oRequest" inputVariable="vRequest"/>

<empty name="PhaseSwitch"
event=" Fulfill ir:InitialRequest(ir.super=self) &

Create pi:ProvideInformation(pi.super=self) "/>

<while condition="getVariableData(’waitResponse’)">
<pick name="WaitMessage">

<onMessage operation="oInfoRequest"
variable="vInfoRequest">

<reply operation="oInfo" variable="vInfo"/>
</onMessage>

<onMessage operation="oResponse" variable="vResponse"
event=" Fulfill pi:ProvideInformation(pi.super=self) &

Create wa:WaitAnswer(wa.super=self) ">
<assign name="LeaveLoop">

<copy>
<from expression="false()"/>
<to variable="waitResponse"/>

</copy>
<copy>

<from variable="vResponse" part="result"/>
<to variable="result"/>

</copy>
</assign>

</onMessage>

</pick>
</while>

<empty name="DoRequestFulfilled"
event=" Fulfill wa:WaitAnswer(wa.super=self) "
constraint=" Forall wa:WaitAnswer(wa.super=self →

G(wa.result ↔self.result)) "/>
</sequence>

Task InitialRequest
Mode achieve
Super DoRequest
Actor Citizen

Task ProvideInformation
Mode achieve
Super DoRequest
Actor Citizen
Fulfillment definition

G (∀ ir: InfoRequest(Received (ir) →
∃ i: Info(Sent (i)))

Task WaitAnswer
Mode achieve
Super DoRequest
Actor Citizen
Attribute result:boolean
Fulfillment definition
∃ r:Response(Received (r) ∧ (result ↔ r.result))

Task DoRequest
Mode achieve
Super BeingAssisted
Actor Citizen
Attribute result:boolean
Fulfillment definition
∃ wa:WaitAnswer(wa.super = self &

Fulfilled (wa) ∧ (result ↔ wa.result))

Figure 4. BPEL4WS process for task DoRequest of actor Citizen .

information requests and thePorvideInformation task can be
considered completed. Therefore, variablewaitResponse is
set to false, so that the〈while 〉 loop is left.

Some additional attributes, which are specific for FT,
are added to the BPEL4WS commands. These attributes
are used to connect the evolution of the BPEL4WS process
with the evolution of the requirements model. Theevent
attributes describe which sub-tasks ofDoRequest are sup-
posed to be created or fulfilled in the requirements model
when a given point is reached in the BPEL4WS code. For
instance, sub-taskInitialRequest is created during the ini-
tialization step and is fulfilled after theRequest message
has been sent (the BPEL4WS command〈empty 〉 is used to
place this fulfillment event in the right position of the pro-
cess). Theconstraint attributes define additional constraints
between the requirements layer and the process layer. They
are typically used to define the values of the attributes of the
sub-tasks. For instance, theconstraint attribute of Figure 4
binds the value of attributeresult of theWaitAnswer sub-task
to the value of variableresult of the BPEL4WS process.

5. Formal Verification

The framework here proposed enables for several for-
mal verification activities over the business requirements
and business processes models. First, it is possible to verify
the requirements model, e.g. by checking its consistency, or
by verifying it against properties describing behavior that
the model is supposed (or not supposed) to exhibit. This
permits to discover inconsistencies and errors in the earliest
phases, before having an actual implementation. As far as
business processes are concerned, further kinds of analysis
can be thought of. For instance, we can check for absence
of deadlocks or livelocks in the devised protocol among the
different parties involved in the business process. That is
we can verify that the described process never blocks or
it is never stuck in a loop. We can also verify business
processes against business requirements and strategic goal
models, thus providing an evidence that the given process
actually implements and fulfills the requirements. Finally,
we can verify whether the BPEL4WS protocol is consistent

with the published one. Moreover, in the inter-enterprise
applications, not only separate business processes should be
analyzed but also process compositions, for instance repre-
sented with BPEL4WS code. The implementation of these
verification activities is still ongoing work.

In this section we present the T-Tool, a verification tool
able to deal with FT specification, and we show how the
functionalities it provides can be used to tackle some of the
verification problems we envisaged.

5.1. The T-Tool Verification Tool

The T-Tool [9] supports the kinds of formal analysis de-
scribed previously. Here we highlight some of its func-
tionalities and we refer the reader to [9] for additional de-
tails. The T-Tool is based on finite-state model checking [5].
Model checking allows for an automatic verification of
a specification with the generation of (counter-)example
traces to witness the validity (or invalidity) of the specifica-
tion. A limit of finite state model checking is that it requires
a model with a finite number of states. Thus an upper bound
on the number of class instances has to be specified in order
to perform model checking.

The T-Tool input is an FT specification along with pa-
rameters that specify the upper bounds for the FT class in-
stances. On the basis of this input, the T-Tool builds a fi-
nite model that represents all possible behaviors that sat-
isfy the constraints of the specification. The T-Tool then
verifies whether this model exhibits the desired behaviors.
The T-Tool allows for different verification functionalities
including interactive animation of the specification, auto-
mated consistency checks, and validation of the specifica-
tion against possibility and assertion properties. Through
animation, the user can generate valid scenarios for the
specification by interacting with the T-Tool and incremen-
tally extending a partial evolution of the model. Animation
allows for a better understanding of the specified business
domain, as well as for the identification of trivial bugs and
missing requirements that are often taken for granted. Con-
sistency checks are standard checks to guarantee that the FT
specification is not self-contradictory. Inconsistent specifi-
cations occur quite often due to complex interactions among
constraints in the specification, and they are very difficult to
detect without the support of automated analysis tools. Con-
sistency checks are performed automatically by the T-Tool
and are independent of the application domain. Assertions
properties describe conditions that should hold for all valid
evolutions of the specification, while possibility properties
describe conditions that should hold for at least one valid
evolution. The verification phase usually generates feed-
back on errors in the FT specification and hints on how to
fix them.

The T-Tool performs the verification of an FT specifica-

L
2
S
M
V

I N
u
S
M
V

S
P
I
N

I
L
2
S
P
I
N

F
T
2
I
L

Verification Engine

Verification Engine

FT

#

IL

T−Tool

IL Scenario
FT Scenario

Figure 5. The T-Tool framework.

tion in two steps (see Figure 5). In the first step, the FT
specification is translated into an Intermediate Language
(IL) specification. In the second step, the IL specification
is given as input to the verification engine that is responsi-
ble of the actual verification. The T-Tool provides the user
with two different verification engines built on top of state-
of-the-art model checkers, that is theNUSMV [4] sym-
bolic model checker and theSPIN [10] explicit state model
checker.

5.2. Verification of Business Requirements

Business requirements model enables for different kinds
of verification to be carried out. In particular, the business
requirements model can be automatically verified for con-
sistency. Among the different kinds of verification the T-
Tool provides are noticeable the verification of the possibil-
ity to create different goals, and to fulfill them thus show-
ing that the specification is not over-specified and different
goals do not conflict with each other.

Besides this, our framework allows business analyst to
specify queries on the model in the form of properties that
the requirements model is supposed to satisfy. We distin-
guish betweenAssertion properties, which describe condi-
tions that should hold for all valid evolutions of the spec-
ification, andPossibility properties, which describe condi-
tions that should hold for at least one valid evolution. Fig-
ure 6 reports an excerpt of desired properties for the con-
sidered case-study. PossibilityP1 aims at guaranteeing that
the set of constraints of the formal business requirements
specification allows for the fulfillment of the task of doing
a request in some scenario of the model. AssertionA1 re-
quires that it is not possible for the citizen to fulfill its goal
of receiving assistance services unless a positive response
to a request from the health-care agency has been received.
Finally, assertionA2 requires that the task of doing a re-
quest is eventually fulfilled under the condition that there is

Possibility P1
∃ dr: DoRequest (Fulfilled (dr))

Assertion A1
∀ c: Citizen (
∃ r: Response (Received (r) ∧ r.receiver = c →¬ r.result) →

∃ rs: ReceiveService (rs.actor = c →¬ Fulfilled (rs)))

Assertion A2
∀ dr: DoRequest (
∃ ra: ReceiveAssistance (ra.depender = dr.actor ∧ Fulfilled (ra)
∧ ∀ r: Request (r.sender = dr.actor → r.receiver = ra.dependee))

→ F Fulfilled (dr))

Figure 6. Formal Tropos properties.

a health-care agency that is bounded to provide assistance to
the user and, the citizen sends the request to that particular
health-care agency.

All the properties in Figure 6 are satisfied on the final
version of the business requirements model of the consid-
ered case-study. However, this result has required several
revision steps, where both the model and the properties have
been adjusted to capture the intended behaviors of the do-
main. For instance, assertionA2 had a crucial role in the
process of precisely defining the mutual expectations incar-
nated by dependencyReceiveAssistance, and captured by
the fulfillment constraints specified for this dependency as
it can be seen in Figure 3.

It has to be remarked that, while verifying business re-
quirements models, one cannot prove the business require-
ments specification is correct, since there is no reference
model. However, the queries carried out on the business re-
quirements specification can provide feedback on the cap-
tured behaviors and catch misunderstandings not trivial to
be identified in an informal setting.

5.3. Verification of Business Processes

The definition of business processes, together with the
bindings that link them to the corresponding tasks and mes-
sages in the formal requirements model, allow for differ-
ent forms of verification. First, the given process can be
checked for problems typical of a process specification, like
the presence of deadlocks or livelocks. This is achieved
by verification that the process specification will eventually
complete on all its possible executions. For instance, in the
case-study the citizen process can be blocked if it waits for
the response from the health-care agency while the latter is
not going to provide it for some reason (a deadlock). Or
a health-care agency may request an additional information
infinitely and the citizen process will stuck in this loop (a
livelock). A further possibility consists of re-checking the
formal queries defined for the requirements model (e.g., the
properties in Figure 6) on the more detailed model. This
is achieved by replacing a task of the FT specification (e.g
task DoRequest) with the corresponding BPEL4WS pro-

cess and by checking again the queries. Another possibility
is checking that the refined model satisfies the requirements
described by theCreation andFulfillment constraints en-
forced in the requirements model for taskDoRequest and
its sub-tasks.

To support these kinds of verification, we have extended
the T-Tool with a translation of BPEL4WS processes into
the language of the verification engine chosen, i.e., into
NUSMV or SPIN finite state machines. Transitions of these
finite state machines are defined according to the seman-
tics of the BPEL4WS constructs. Fairness conditions are
added to the finite state machines to guarantee that the pro-
cess eventually progresses whenever the next action to be
executed is not blocked. In the case of the process in Fig-
ure 4, for instance, the only point where the process can
be blocked forever is on the〈pick 〉 action, and only if no
InfoRequest andResponse messages are ever received. Fi-
nally, theevent andconstraint annotations are mapped into
a set of temporal logic constraints that restrict the valid be-
haviors of the finite state machine.

At the time of writing we support only a restricted sub-
set of BPEL4WS. Some restrictions rule out those operators
that the verification techniques currently provided by the T-
Tool are not able to deal with. In particular, the models to
be verified have to be finite state, thus the usage of all those
BPEL4WS constructs that may lead to an infinite number
is restricted (e.g. interpretation of types of variables or cre-
ation of processes and compensation/fault handlers, which
may lead to an infinite number of active instances). Another
restriction concerns the time constructs of BPEL4WS (e.g.,
alarms and timeouts), that our verification tool is not able to
manage. We are working to include other constructs (like
flow, event-handlers or correlations) that are currently not
supported, but that can be easily integrated.

The verification applied to the BPEL4WS process of
Figure 4 pointed out some inconsistencies among the con-
straints of the requirements specification and the BPEL4WS
process definition. For instance, the fulfillment definition
of the DoRequest task (see Figure 4, right part) requires
that the value of the〈result 〉 variable in this task should be
equivalent to the value of the corresponding variable in the
WaitAnswer task. In the BPEL4WS code (see Figure 4, left
part) the value of this variable is copied directly from the
Response message received. Thus, the corresponding vari-
able of theWaitResponse task remains unchanged. This is
shown in the counterexample represented in the Figure 7.
The counterexample represents the message sequence chart
of the execution of the model. The citizen creates theDoRe-
quest task which generates theInitialRequest subtask where
the request is sent to the health-care agency. In response, the
latter creates tasksReceiveRequest andEvaluateRequest.
Then the subtaskProvideAnswer is created where the re-
sponse message is created with positive result (result=1).

The DoRequest process receives the message and created
the subprocessWaitAnswer. The value of its variableresult
is initially false. Then the value of the variableresult in the
DoRequest process is assigned to value contained in the re-
ceived message. Thus, the values of the variablesresult of
the DoRequest task andWaitAnswer do not coincide. The
constraint become true if we copy the content of the mes-
sage to the variableresult of theWaitAnswer task.

As another example, if we modify the code of the pro-
cess, e.g., by disallowing the reception of one of the two
messages in the〈pick 〉 command, then the verification de-
tects problems. If we disallow the reception of theInfoRe-
quest message, the assertionA1 is violated. Indeed, if the
health-care agency is requesting some information, the citi-
zen is not able to answer to the request and the agency will
not provide response to the citizen. Thus, it is impossible
to fulfill the DoRequest. However, theReceiveAssistance
dependency still may be fulfilled, as it may be seen from
the specification. In this case, the verification tool provides
a counter-example similar to one represented in Figure 7. If
we disallow the reception of theResponse, even the pos-
sibility P1 becomes false. Indeed, if we do not receive the
response, it is not possible to fulfillDoRequest.

The verification described so far deals mainly with the
orchestration aspects of the Web service composition. How-
ever, other kinds of analysis may be applied in this frame-
work. In particular, the choreography model of several par-
ticipants may be verified against mutual expectations and
requirements or even against global domain requirements
on their composition.

We also remark that the approach described in this paper
allows also for another kind of verification. Namely, in or-
der to check that the process model is correct, one can show
that it is equivalent to the requirements model according to
a suitable behavioral equivalence. The current T-Tool veri-
fication engines, however, does not support yet this kind of
verification.

6. Related Work

In current practice, business requirements and their re-
finement into business processes is done informally, or us-
ing semi-formal notations. For instance in [11] a method
providing a model-driven transformations to design busi-
ness processes is presented. The business views (require-
ments) are expressed in ADF [6] or in UML2 activity dia-
grams, which focus on the flow of information and control
among the different activities, whereas the implementation
is specified in BPEL4WS. In other frameworks process and
workflow modeling languages like BPML [2] or XPDL [17]
are used to model abstract and executable business pro-
cesses and the supporting entities. All these formalisms
are at the activity level according our requirements model

(see Figure 2). This level of description of business require-
ments is very relevant but it is insufficient to capture the
complexity of requirements of a distributed business pro-
cess domain and to serve as a basis for automatic composi-
tion and verification of business processes. On the contrary,
our approach allows to integrate the rationale behind the de-
veloped business process with its composite structure, thus
allowing for capturing not only “how” the process is built,
but also “why” the process is structured in a certain way.

A framework similar in spirit to the one proposed in this
paper has been presented in [16], that addresses the problem
of using UML2 for modeling business strategy and business
processes. The framework focuses on the modeling prob-
lem without considering the validation of business require-
ments or the verification of business processes against busi-
ness requirements. In our framework these kinds of anal-
ysis are aimed to support the modeling process and allow
for identification and elimination of errors and conflicts in
different development phases.

Several different formal specification notations are ap-
plied to the specification of the structure and the desir-
able behavior of software system. For instance, the Dar-
win [13] architecture description language describes the
structure of the system in terms of components, interfaces
and connectors. Moreover, it allows for the formal speci-
fication of the behavior of the system. The requirements-
oriented and agent-oriented notations provided by Tropos
seem more adequate for describing business requirements
than the architecture-oriented notations provided by Darwin
and similar languages.

As far as verification of business processes is concerned,
the work described in [12] shows how to encode in the lan-
guage of theNUSMV model checker business processes
and how to proceed in refining the business processes to
satisfy requirements properties. However, this pioneering
work lacks of the link among the business requirements
and the resulting business processes thus making it diffi-
cult to trace back the results obtained by the verification to
business requirements. In [7, 8] a model-based approach
for verifying Web service compositions is discussed. This
approach provides for early-verification of properties cre-
ated from design specifications and implementation models.
Specifications of the design are modeled as UML Message
Sequence Charts, which then are compiled into Finite State
Process notation (FSP) for formal reasoning. BPEL4WS
implementations are mechanically translated to FSP to al-
low for checking equivalence among the implementation
and the UML specification. The approach is supported by a
suite of cooperating tools for specification, formal modeling
and trace animation of the composition of work-flows. Sim-
ilarly to the other approaches, this work lack of the strategic
analysis phase and of the link among requirements and the
actual implementation.

Citizen SanitaryAgency

SanitaryAgency_1
created

ProvideFairAssistance_1
createdProvideFairAssistance

HandleAssistanceRequest_1
createdHandleAssistanceRequest

Citizen_1
created

BeingAssisted_1
created BeingAssisted

DoRequest_1
created DoRequest

InitialRequest_1
created

Request_1
created

Request_chan!0,0

InitialRequest_1
fulfilled

ProvideInformation_1
created

Request_chan?0,0

ReceiveRequest_1
created ReceiveRequest

ReceiveRequest_1
fulfilled

EvaluateRequest_1
created EvaluateRequest

ProvideAnswer_1
created ProvideAnswer

Response_1
created

Response_1.result=1

Response_chan!0,0

Response_chan?0,0

ProvideInformation_1
fulfilled

WaitAnswer_1
created

WaitAnswer_1.result=0

DoRequest_1.result=1

WaitAnswer_1
fulfilled

DoRequest_1
fulfilled

Figure 7. A counter-example generated by T-Tool.

Distinguishing feature of the approach presented here is
that we start from a higher-level, strategic domain model,
where processes as such are represented at a very abstract
level and other types of requirements – for instance, gen-
eral business rules on resource usage or engagement with
other partners – can be easily represented. This gives us
more flexibility in composing processes, and let us perform
a wider range of verifications than directly starting from a
business process or from elementary service definitions.

7. Conclusions and Future Work

In this paper we proposed a methodology based on an ex-
tension of Tropos for modeling business requirements, start-
ing from strategic goals and constraints that are further re-

fined and operationalized into business processes to achieve
these goals and to satisfy the constraints. The methodology
is also supported by a formal representation of the business
requirements and business processes that enables for sev-
eral kind of verification activities that constitute the basis
for the automatic composition of distributed business pro-
cesses. The verification activities are supported by a tool,
the T-Tool, based on model checking, which allows to ver-
ify and suggest possible fix to the models as to satisfy the
requirements.

The work presented here is our first step towards a long
term vision where formal techniques are applied during
the entire life cycle of services, from requirements analy-
sis to execution. In the short term, we plan to extend the
requirements specification language we described to bet-

ter capture the needs of the applicative domain, e.g., to
provide for a better focus on activity level description of
business requirements and to allow for a better integration
business processes in the requirements model. Moreover,
we plan to experiment with model checking tools different
from the one provided by the T-Tool for being able to cope
with all the verification tasks we envisaged. In the longer
term, we will investigate how to improve the generation of
BPEL4WS process skeletons in order to capture more de-
tails from the business requirements model, such as the type
of long-term business transaction that is required. An im-
proved BPEL4WS process should also enable an execution
engine to relate faults and exceptions to specific goals or
requirements of the domain model, in order to take appro-
priate action or provide feedback to the user.

On the longer term, we intend to integrate in our frame-
work techniques supporting the change management. More
precisely we intend to complement the verification tech-
niques described in this paper, which are able to detect
when changes in the requirements break the system, with
automated code synthesis and code adaptation techniques,
which are able to react to these changes. In particular, we
will exploit synthesis techniques like the ones described
in [15].

References

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, and S. Weerawarana.Business Process Execution Lan-
guage for Web Services Version 1.1, 2003.

[2] A. Arkin. Business Process Modeling Language, Version
1.0, November 2002.

[3] J. Castro, M. Kolp, and J. Mylopoulos. Towards
requirements-driven information systems engineering: the
Tropos project.Information Systems, 27(6):365–389, 2002.

[4] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
NUSMV 2: An OpenSource Tool for Symbolic Model
Checking. InProc. of Computer Aided Verification Con-
ference. Springer, 2002.

[5] E. M. Clarke, O. Grumberg, and D. Peled.Model Checking.
MIT Press, 1999.

[6] E. Deborin.Continuous Business Process Management With
Holosofx BPM Suite and IBM MQSeries Workflow. IBM
Redbooks, 2002.

[7] H. Foster, S. Uchitel, J. Magee, and J. Kramer. LTSA-
BPEL4WS: Tool Support for Model-based Verification of
Web Service Compositions. Technical report, Imperial Col-
lege London, 2003.

[8] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based
verification of web service compositions. InProc. of the
18th International Conference on Automated Software En-
gineering (ASE’03), 2003.

[9] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri,
and P. Traverso. Specifying and analyzing early require-
ments in Tropos.Requirements Engineering, 9(2):132–150,
2004.

[10] G. J. Holzmann.The Spin Model Checker, Primer and Ref-
erence Manual. Addison-Wesley, Reading, Massachusetts,
2003.

[11] J. Koehler, R. Hauser, S. Kapoor, F. Y. Wu, and S. Kumaran.
A model-driven transformation method. InProc. of the Sev-
enth International Enterprise Distributed Object Computing
Conference (EDOC’03). IEEE Computer Society, 2003.

[12] J. Koehler, G. Tirenni, and S. Kumaran. From business pro-
cess model to consistent implementation: A case for formal
verification methods. In6th International Enterprise Dis-
tributed Object Computing Conference (EDOC 2002). IEEE
Computer Society, 2002.

[13] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying
distributed software architectures. InProc. of the 5th Euro-
pean Software Engineering Conference, ESEC’95. Springer-
Verlag, 1995.

[14] C. Peltz. Web Services Orchestration and Choreography.
Web Services Journal, 2003.

[15] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and
P. Traverso. Planning and monitoring web service compo-
sition. In Proc. 11th Int. Conf. on Artificial Intelligence:
Methodology, Systems, Architectures, 2004. To appear.

[16] A. Vasconcelos, A. Caetano, J. Neves, P. Sinogas,
R. Mendes, and J. M. Tribolet. A framework for model-
ing strategy, business processes and information systems. In
5th International Enterprise Distributed Object Computing
Conference (EDOC 2001). IEEE Computer Society, 2001.

[17] Workflow Management Coalition.Workflow Process Defini-
tion Interface – XML Process Definition Language, Version
1.0 Final Draft, October 2002.

