Informatica — 2016-02-08

Nota: Scrivete su tutti i fogli nome e matricola.

Esercizio 1. Si dimostri che se $f: \mathcal{P}(U) \to \mathcal{P}(U)$ è continua (secondo Scott), allora f è anche monotona.

Esercizio 2. Si stabilisca quali delle seguenti funzioni $\mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ sono continue secondo Scott, giustificando la risposta.

$$f(X) = \mathbb{N} \setminus X \qquad g(X) = \begin{cases} X & \text{se } X \text{ è finito} \\ X \cup \{5\} & \text{altrimenti} \end{cases}$$

$$h(X) = \begin{cases} X & \text{se } 5 \notin X \\ X \cup \{5\} & \text{altrimenti} \end{cases}$$

Soluzione (bozza).

Parte f. Si ha $2 \in f(\{1\})$ ma $2 \notin f(\{1,2\})$, quindi $f(\{1\}) \not\subseteq f(\{1,2\})$, da cui f non è monotona, e di conseguenza nemmeno continua.

Parte g. Sia $X_i = \{n \in \mathbb{N} \mid 10 \le n \le 10 + i\}$. Abbiamo che

$$g(\bigcup_{i} X_{i}) = g(\{n \in \mathbb{N} \mid n \ge 10\}) = \{n \in \mathbb{N} \mid n \ge 10\} \cup \{5\}$$

e che, siccome X_i è finito per ogni i,

$$\bigcup_{i} g(X_i) = \bigcup_{i} X_i = \{ n \in \mathbb{N} \mid n \ge 10 \}$$

Siccome i due insiemi sono diversi, g non è continua.

Parte h. Quando $5 \in X$ si ha $X \cup \{5\} = X$. Quindi, per ogni X, si ha che h(X) = X. Di qui, la continuità segue banalmente.

Esercizio 3. Data una variable $x \in Var$, definiamo l'insieme $Com^x \subseteq Com$ dei "comandi che non assegnano ad x" in modo induttivo tramite le seguenti regole

$$\frac{x \neq y}{\text{skip}}[C0] \qquad \frac{x \neq y}{y := e}[C1] \qquad \frac{c_1 \quad c_2}{c_1; c_2}[C2]$$

$$\frac{c_1 \quad c_2}{\text{if } e \neq 0 \text{ then } c_1 \text{ else } c_2}[C3] \qquad \frac{c}{\text{while } e \neq 0 \text{ do } c}[C4]$$

1. [20%] Si dica quali condizioni vanno verificate per potere dimostrare $\forall c \in Com^x$. p(c) per induzione su Com^x , dove p è una proprietà sui comandi.

2. [50%] Fissato A un arbitrario insieme di interi, si dimostri che

$$\forall c \in Com^x$$
. $\vdash \{x \in A\} \ c \ \{x \in A\}$

procedendo per induzione su Com^x . Si svolgano i casi [C0], [C1], [C2].

- 3. [20%] Si svolgano i rimanenti casi [C3], [C4].
- 4. [10%] Si trovi infine un comando $c \in Com \setminus Com^x$ che soddisfi comunque $\vdash \{x \in A\}$ c $\{x \in A\}$. Si dimostri tale tripla di Hoare.

Soluzione (bozza).

Parte 1 Vanno verificate:

- 0) $p(\mathsf{skip})$
- 1) $x \neq y \implies p(y := e)$
- $2) \quad p(c_1) \wedge p(c_2) \implies p(c_1; c_2)$
- 3) $p(c_1) \wedge p(c_2) \implies p(\text{if } e \neq 0 \text{ then } c_1 \text{ else } c_2)$
- 4) $p(c) \implies p(\text{while } e \neq 0 \text{ do } c)$

Parte 2 Usiamo il principio di sopra dove $p(c) = (\vdash \{x \in A\} \ c \ \{x \in A\})$. Caso [C0] Senza ipotesi induttive, dobbiamo dimostrare che

$$\vdash \{x \in A\} \text{ skip } \{x \in A\}$$

ma questo è immediato dalla regola [Skip] delle triple di Hoare.

Caso [C1] Senza ipotesi induttive, e con la condizione a lato $x \neq y$ dobbiamo dimostrare che

$$\vdash \{x \in A\} \ y := e \ \{x \in A\}$$

La regola delle triple dice che

$$\vdash \{x \in A\{e/y\}\}\ y := e\ \{x \in A\}$$

Visto che $x \neq y$, la sostituzione non ha effetto, e quindi la precondizione di sopra è proprio $\{x \in A\}$, come si desiderava.

Caso [C2] Abbiamo due ipotesi induttive:

$$\vdash \{x \in A\} \ c_1 \ \{x \in A\} \qquad \vdash \{x \in A\} \ c_2 \ \{x \in A\}$$

e dobbiamo fare vedere che

$$\vdash \{x \in A\} \ c_1; c_2 \ \{x \in A\}$$

La tesi deriva direttamente dalla regola [Comp] delle triple, applicata alle due ipotesi induttive. Nella notazione usuale, la derivazione è scritta come

$$\{x \in A\}$$

$$c_1$$

$$\{x \in A\}$$

$$c_2$$

$$\{x \in A\}$$

Parte 3 Caso [C3] Abbiamo due ipotesi induttive:

$$(1) \vdash \{x \in A\} \ c_1 \ \{x \in A\} \qquad (2) \vdash \{x \in A\} \ c_2 \ \{x \in A\}$$

e dobbiamo fare vedere che

$$\vdash \{x \in A\}$$
 if $e \neq 0$ then c_1 else $c_2 \{x \in A\}$

La deriviamo come segue:

Caso [C4] Abbiamo una ipotesi induttive:

$$(1) \vdash \{x \in A\} \ c \ \{x \in A\}$$

e dobbiamo fare vedere che

$$\vdash \{x \in A\}$$
 while $e \neq 0$ do $c \{x \in A\}$

La deriviamo come segue:

Nome	_ Matricola	_
Esercizio 4. Si dimostri formalmente la seguente riempiendo le linee sottostanti con		Hoare
$\{N \ge 0\}$		
n := 0;		
s := 0;		
$\overline{\text{while } n < N \text{ do}}$		
n := n + 1;		
s := s + n * n;		
${s = N \cdot (N+1) \cdot (2 \cdot N+1)/6}$		
Giustificare qui sotto eventuali usi della re	gola $PrePost$.	
		_
		_
		_
		_
		_

Soluzione (bozza).

```
 \begin{cases} N \geq 0 \rbrace \\ \{0 = 0 \cdot (0+1) \cdot (2 \cdot 0 + 1)/6 \wedge 0 \leq N \} \ (1) \\ n := 0; \\ \{0 = n \cdot (n+1) \cdot (2 \cdot n + 1)/6 \wedge n \leq N \} \\ s := 0; \\ \{INV : s = n \cdot (n+1) \cdot (2 \cdot n + 1)/6 \wedge n \leq N \} \\ \text{while } n < N \text{ do} \\ \{INV \wedge n < N \} \\ \{s + (n+1)^2 = (n+1) \cdot (n+1+1) \cdot (2 \cdot (n+1) + 1)/6 \wedge n + 1 \leq N \} \ (2) \\ n := n+1; \\ \{s + n^2 = n \cdot (n+1) \cdot (2 \cdot n + 1)/6 \wedge n \leq N \} \\ s := s + n * n; \\ \{INV \wedge \neg (n < N) \} \\ \{s = N \cdot (N+1) \cdot (2 \cdot N + 1)/6 \} \ (3) \end{cases}
```

Per le PrePost:

- 1) Banale calcolo. $0 \le N$ è un'ipotesi.
- 2) L'ipotesi n < N assicura $n+1 \le N$, visto che sono interi. L'altra equazione si verifica rimpiazzando s con il suo valore da ipotesi $n \cdot (n+1) \cdot (2 \cdot n + 1)/6$ e semplificando.

$$\frac{n \cdot (n+1) \cdot (2 \cdot n+1)}{6} + (n+1)^2 = \frac{(n+1) \cdot (n+2) \cdot (2 \cdot n+3)}{6}$$

3) Dalle ipotesi segue che n = N, e da quello la tesi.