Informatica — 2023-01-23

Nota: Scrivete su tutti i fogli nome e matricola.

Esercizio 1. Si forniscano le regole della semantica big step per i comandi di IMP (\rightarrow_b) . Si fornisca anche la segnatura della relazione semantica $(\rightarrow_b) \in \mathcal{P}(\ldots)$, descrivendo brevemente gli insiemi che appaiono in essa.

Esercizio 2. Sia $f : \mathbb{N} \to (\mathbb{N} \times \mathbb{N})$ un funzione arbitraria. Le seguenti regole definiscono induttivamente l'insieme S delle sequenze di naturali (regole [S0], [S1]) e una relazione $U \in \mathcal{P}(\mathbb{N} \times S)$ (regole [U0], [U1]). Sotto, n, k, l, a, b indicano naturali, mentre s indica una sequenza in S.

$$\frac{s}{\epsilon}[S0] \qquad \frac{s}{n:s}(n \in \mathbb{N})[S1] \qquad \frac{U(b,s)}{U(0,\epsilon)}[U0] \qquad \frac{U(b,s)}{U(n+1,a:s)}(f(n)=(a,b))[U1]$$

1. [20%] Si trovi una funzione f tale per cui la relazione U definita sopra soddisfi $U(1, 1:2:3:\epsilon)$. Si giustifichi la risposta esibendo una derivazione, includendo anche il risultato di f negli usi della regola [U1].

Nota bene: i punti seguenti sono da risolversi con f funzione arbitraria.

- 2. [20%] Si enunci il principio di induzione associato alla relazione U.
- 3. [10%] Si consideri l'enunciato seguente:

$$\forall n \in \mathbb{N}, s \in S. \ U(n,s) \land n \neq 0 \implies \exists k, l \in \mathbb{N}. \ f(k) = (l,0)$$

Si riscriva l'enunciato in modo logicamente equivalente nella forma

$$\forall n \in \mathbb{N}, s \in S. \ U(n,s) \implies p(n,s)$$

per un qualche predicato p.

4. [50%] Si concluda la dimostrazione dell'enunciato visto sopra usando il principio di induzione associato a U.

Soluzione (bozza).

Parte 1

Un possibile esempio è prendere f(2) = (3,0) e f(n) = (n+1, n+2) per $n \neq 2$.

$$\frac{\overline{U(0,\epsilon)}}{\frac{U(3,3:\epsilon)}{U(2,2:3:\epsilon)}}(f(2) = (3,0))$$

$$\frac{U(2,2:3:\epsilon)}{U(1,1:2:3:\epsilon)}(f(0) = (1,2))$$

Parte 2

Per dimostrare che per ogni n, s tali che U(n, s) vale p(n, s) basta che:

$$\begin{array}{ll} U0) & p(0,\epsilon) \\ U1) & \forall n,a,b \in \mathbb{N}, s \in S. \ p(b,s) \land f(n) = (a,b) \implies p(n+1,a:s) \end{array}$$

Parte 3

Basta prendere $p(n,s): n \neq 0 \implies \exists k, l \in \mathbb{N}. \ f(k) = (l,0).$

Parte 4

Caso U0

Bisogna dimostrare $p(0, \epsilon)$ e cioè $0 \neq 0 \implies \exists k, l \in \mathbb{N}. f(k) = (l, 0)$. Assumendo l'ipotesi $0 \neq 0$ ricaviamo un assurdo.

Caso U1

Assumiamo come ipotesi induttiva IP1: p(b, s) e la condizione a lato IP2: f(n) = (a, b). La prima si riscrive come

$$IP1: b \neq 0 \implies \exists k, l \in \mathbb{N}. \ f(k) = (l, 0)$$

Procediamo a dimostrare la tesi p(n + 1, a : s), cioè:

$$n+1 \neq 0 \implies \exists k, l \in \mathbb{N}. \ f(k) = (l, 0)$$

Assumiamo l'ipotesi (inutile) $n+1 \neq 0$ e dimostriamo

$$\exists k, l \in \mathbb{N}. \ f(k) = (l, 0)$$

Ora, procediamo per casi su b: si ha b=0 oppure $b\neq 0$. Se fosse b=0, allora per IP2 si ha f(n)=(a,0) da cui la tesi scegliendo k=n, l=a. Se invece fosse $b\neq 0$, possiamo applicate IP1 che fornisce $\exists k, l \in \mathbb{N}$. f(k)=(l,0) che è la tesi.

Esercizio 3. Nel linguaggio IMP, si supponga $Var = VarP \cup VarD$ per due insiemi infiniti disgiunti VarP e VarD. Si supponga che gli operatori aritmetici usati nella definizione di Exp siano solo +, -, *. Si definisca inoltre $State^* \subseteq State$ come segue:

$$State^* = \{ \sigma : Var \to \mathbb{Z} \mid \forall x \in Var P. \ \sigma(x) \ pari \land \forall y \in Var D. \ \sigma(y) \ dispari \}$$

- 1. [70%] Si definisca induttivamente, tramite regole di inferenza, una relazione $R \in \mathcal{P}(Exp \times \{0,1\})$ tale che:
 - (a) $R \ \dot{e} \ una \ funzione \ Exp \rightarrow \{0,1\};$
 - (b) Per ogni $e \in Exp, n \in \{0,1\}, v \in \mathbb{Z}, \sigma \in State^* \text{ se vale } R(e,n) \land \langle e,\sigma \rangle \rightarrow_e v$ allora $\exists k \in \mathbb{Z}. \ v = 2k + n.$
- 2. [30%] Si dia una giustificazione informale ma precisa per le due proprietà sopra, relativamente alle tre regole che ritenete più significative. Non vi si chiede di esaminare gli altri casi.

Soluzione (bozza).

Parte 1.

Una possibile soluzione è

$$\frac{R(2z,0)}{R(2z,0)}(z \in \mathbb{Z})[LitP] \qquad \frac{R(2z+1,1)}{R(2z+1,1)}(z \in \mathbb{Z})[LitD]$$

$$\frac{R(x,0)}{R(x,0)}(x \in VarP)[VarP] \qquad \frac{R(y,1)}{R(y,1)}(y \in VarD)[VarD]$$

$$\frac{R(e_1,n) \quad R(e_2,n)}{R(e_1+e_2,0)}[PlusP] \qquad \frac{R(e_1,n_1) \quad R(e_2,n_2) \quad n_1 \neq n_2}{R(e_1+e_2,1)}[PlusD]$$

$$\frac{R(e_1,n) \quad R(e_2,n)}{R(e_1-e_2,0)}[MinusP] \qquad \frac{R(e_1,n_1) \quad R(e_2,n_2) \quad n_1 \neq n_2}{R(e_1-e_2,1)}[MinusD]$$

$$\frac{R(e_1,n_1) \quad R(e_2,n_2)}{R(e_1*e_2,n_1\cdot n_2)}[Times]$$

Parte 2.

Note: qui sotto si considerano velocemente tutti i casi, ma per l'esame bastava giustificare tre regole.

Per la proprietà (a), R è una funzione perché ogni forma di espressione ha esattamente una regola che la gestisce. Per esempio, $e_1 * e_2$ è gestita solo dalla [Times], mentre un letterale è gestito da [LitP] se è pari, altrimenti da [LitD]. Anche un'espressione $e_1 + e_2$ è gestita da una sola regola: per potesi induttiva esistono unici n_1 e n_2 tali che $R(e_1, n_1)$ e $R(e_2, n_2)$. Quindi, se $n_1 = n_2$ si applica solo [PlusP], altrimenti solo [PlusD]. I casi $x \in Var$ e $e_1 - e_2$ sono simili.

Per la proprietà (b), esaminiamo i casi.

Le regole [LitP] e [LitD] controllano la parità dei letterali. Ai letterali pari viene associato 0, mentre a quelli dispari 1.

La semantica dei letterali fa sì che il risultato v sia il letterale stesso. Quindi la tesi si riduce a $\exists k \in \mathbb{Z}$. 2z = 2k + 0 o a $\exists k \in \mathbb{Z}$. 2z + 1 = 2k + 1 che sono banali.

Per le variabili e le regole [VarP], [VarD], il ragionamento è simile, e si sfrutta il fatto che $\sigma(x)$ è pari per $x \in VarP$ e dispari per $x \in VarD$.

Per [PlusP] e $e_1 + e_2$, l'ipotesi induttiva dice che $\exists k_1 \in \mathbb{Z}$. $v_1 = 2k_1 + n$ e $\exists k_2 \in \mathbb{Z}$. $v_2 = 2k_2 + n$, quindi $v_1 + v_2 = 2(k_1 + k_2 + n)$ dà la tesi.

Per [PlusD] e $e_1 + e_2$, l'ipotesi induttiva dice che $\exists k_1 \in \mathbb{Z}$. $v_1 = 2k_1 + n_1$ e $\exists k_2 \in \mathbb{Z}$. $v_2 = 2k_2 + n_2$ con $n_1 \neq n_2$, quindi $v_1 + v_2 = 2(k_1 + k_2) + 1$ dà la tesi.

I casi [MinusP], [MinusD] sono analoghi.

Per [Times] e $e_1 * e_2$, l'ipotesi induttiva dice che $\exists k_1 \in \mathbb{Z}. \ v_1 = 2k_1 + n_1$ e $\exists k_2 \in \mathbb{Z}. \ v_2 = 2k_2 + n_2$, quindi $v_1 \cdot v_2 = 2(k_1k_2 + k_1n_2 + k_2n_1) + n_1n_2$ dà la tesi.

3

Nome	Matricola
Esercizio 4. Si dimostri formali le linee sottostanti con opportun	mente la validità della tripla di Hoare seguente riempiendo e asserzioni.
$\{n=N\geq 0\}$	
y := 0;	
x := 5;	
$ \overline{ \text{ while } y < n \text{ do} } $	
x := x - 2;	
y := y + 1;	
$\overline{x := 2 * x}$	
$\frac{1}{\{x=2^N+4\}}$ Si giustifichino qui sotto gli ever	ntuali usi della regola $PrePost$.

Soluzione (bozza).

```
{n = N \ge 0} (1)
\{5 = 2^0 + 4 \land 0 \le n = N\}
y := 0;
\{5 = 2^y + 4 \land y \le n = N\}
x := 5;
\{INV : x = 2^y + 4 \land y \le n = N\}
while y < n do
     \{INV \land y < n\} (2)
     \{2(x-2) = 2^{y+1} + 4 \land y + 1 \le n = N\}
     x := x - 2;
     \{2x = 2^{y+1} + 4 \land y + 1 \le n = N\}
     y := y + 1;
     {2x = 2^y + 4 \land y \le n = N}
     x := 2 * x
\{INV \land \neg (y < n)\}\ (3)
\{x = 2^N + 4\}
```

Per le PrePost:

- 1) Banale aritmetica.
- 2) La parte della tesi $y+1 \le n=N$, visto che lavoriamo con numeri interi, è equivalente a y < n=N, che deriva immediatamente dalle ipotesi. La parte della tesi $2(x-2)=2^{y+1}+4$, sostituendo x come da INV, si riscrive come $2(2^y+4-2)=2^{y+1}+4$ e quindi vale.
- 3) Per ipotesi $\neg (y < n)$ e $y \le n = N$, da cui y = N. Per ipotesi abbiamo anche $x = 2^y + 4$ da cui la tesi $x = 2^N + 4$.