Formal Techniques - 2016-09-05

Exercise 1. Let A, C be two CLs, with functions $\alpha: C \rightarrow A$ and $\gamma: A \rightarrow C$ satisfying the adjunction property $\alpha(c) \sqsubseteq a \Longleftrightarrow c \sqsubseteq \gamma(a)$ for all $a \in A, c \in C$. Prove that α is monotonic.

Exercise 2. Consider the following protocol excerpt written in the applied-pi notation.
(in X. out $\mathrm{f}(X) .() \mid$ in Y. out $\mathrm{g}(Y)$. () | in Z. in W. out $\mathrm{h}(Z, \mathrm{~g}(W))$. ())
Apply the control flow analysis to the protocol above, generating a tree automaton to over-approximate the message flow, as done by function gen(...). Provide a list of states for such automaton and the transitions among them. For each state, briefly hint to its relationship with the protocol above.
Exercise 3. Consider the following tree automaton

$$
\begin{aligned}
& @ a \rightarrow \operatorname{enc}(@ b, @ a), \operatorname{dec}(@ a, @ a), k 2 \quad @ b \rightarrow \operatorname{enc}(@ c, @ c), \operatorname{dec}(@ b, @ b), k 1 \\
& @ c \rightarrow \operatorname{dec}(@ d, @ e) \quad @ d \rightarrow \operatorname{enc}(@ e, @ f) \quad @ e \rightarrow k 1, m \quad @ f \rightarrow k 2, k 1, m
\end{aligned}
$$

and the rewriting rule

$$
\operatorname{dec}(\operatorname{enc}(M, K), K) \Rightarrow M
$$

Apply the completion algorithm to the above automaton, building an over-approximation for the languages associated to its states which is closed under rewriting. Assuming @a models the set of messages being exchanged over a public channel, state what can be concluded about the secrecy of message m.

Exercise 4. Formally prove the following formula exploiting the Curry-Howard isomorphism.

$$
\forall p, q, r: \text { Prop. }((p \wedge q) \vee(r \wedge p)) \rightarrow(p \wedge(r \vee q))
$$

Exercise 5. Let A, B, C be $D C P O s$, and $f \in(A \times B \rightarrow C)$. Prove that f is Scott-continuous if and only if for all $a \in A$ the function $f(a, \bullet) \in B \rightarrow C$ is Scott-continuous, and, for all $b \in B$ the function $f(\bullet, b) \in A \rightarrow C$ is Scottcontinuous.

Exercise 6. Let $D C P O_{\perp}$ denote the class of $D C P O$ s having a bottom element. Given any two $D C P O_{\perp}$ a coproduct $A+B$ of A and B is a tuple $\left(C, i n_{A}, i n_{B}\right)$ where:

1. C is a $D C P O_{\perp}$ and in $_{A} \in[A \rightarrow C]$, in $_{B} \in[B \rightarrow C]$ are Scott-continuous;
2. for any $D C P O_{\perp} X$ and any Scott-continuous $f_{A} \in[A \rightarrow X], f_{B} \in[B \rightarrow X]$ there exists a unique Scott-continuous $m \in[C \rightarrow X]$ satisfying

$$
\begin{aligned}
f_{A} & =m \circ i n_{A} \\
f_{B} & =m \circ i n_{B}
\end{aligned}
$$

Prove that all the following attempts fail, in general, at defining a coproduct.

1. Take $C=A \uplus B$ to be the disjoint union of A and B.
2. Take $C=(A \uplus B)_{\perp}$ to be the lifted disjoint union of A and B.
3. Take $C=A \oplus B$ to be the disjoint union of A and B, where their respective bottoms \perp_{A}, \perp_{B} have been identified.
(Hint - attempt 1 fails for a trivial reason; for attempts 2,3 find f_{A}, f_{B} so that m does not exist or is not unique. Very small counterexamples exist.)
