Formal Techniques – 2016-09-05

Exercise 1. Let A, C be two CLs, with functions $\alpha : C \to A$ and $\gamma : A \to C$ satisfying the adjunction property $\alpha(c) \sqsubseteq a \iff c \sqsubseteq \gamma(a)$ for all $a \in A, c \in C$. Prove that α is monotonic.

Exercise 2. Consider the following protocol excerpt written in the applied-pi notation.

(in X. out f(X). () | in Y. out g(Y). () | in Z. in W. out h(Z, g(W)). ())

Apply the control flow analysis to the protocol above, generating a tree automaton to over-approximate the message flow, as done by function gen(...). Provide a list of states for such automaton and the transitions among them. For each state, briefly hint to its relationship with the protocol above.

Exercise 3. Consider the following tree automaton

and the rewriting rule

 $\mathsf{dec}(\mathsf{enc}(M,K),K) \Rightarrow M$

Apply the completion algorithm to the above automaton, building an over-approximation for the languages associated to its states which is closed under rewriting. Assuming **@a** models the set of messages being exchanged over a public channel, state what can be concluded about the secrecy of message **m**.

Exercise 4. Formally prove the following formula exploiting the Curry-Howard isomorphism.

$$\forall p,q,r: \mathsf{Prop.}\ ((p \land q) \lor (r \land p)) \to (p \land (r \lor q))$$

Exercise 5. Let A, B, C be DCPOs, and $f \in (A \times B \to C)$. Prove that f is Scott-continuous if and only if for all $a \in A$ the function $f(a, \bullet) \in B \to C$ is Scott-continuous, and, for all $b \in B$ the function $f(\bullet, b) \in A \to C$ is Scott-continuous.

Exercise 6. Let $DCPO_{\perp}$ denote the class of DCPOs having a bottom element. Given any two $DCPO_{\perp}$ a coproduct A + B of A and B is a tuple (C, in_A, in_B) where:

- 1. C is a $DCPO_{\perp}$ and $in_A \in [A \to C]$, $in_B \in [B \to C]$ are Scott-continuous;
- 2. for any $DCPO_{\perp} X$ and any Scott-continuous $f_A \in [A \to X], f_B \in [B \to X]$ there exists a unique Scott-continuous $m \in [C \to X]$ satisfying

$$f_{A} = m \circ in_{A}$$

$$f_{B} = m \circ in_{B}$$

$$A \xrightarrow{in_{A}} f_{A} \xrightarrow{f_{A}} C \exists ! m \downarrow X$$

$$B \xrightarrow{in_{B}} f_{B}$$

Prove that all the following attempts fail, in general, at defining a coproduct.

- 1. Take $C = A \uplus B$ to be the disjoint union of A and B.
- 2. Take $C = (A \uplus B)_{\perp}$ to be the lifted disjoint union of A and B.
- 3. Take $C = A \oplus B$ to be the disjoint union of A and B, where their respective bottoms \perp_A, \perp_B have been identified.

(Hint – attempt 1 fails for a trivial reason; for attempts 2,3 find f_A , f_B so that m does not exist or is not unique. Very small counterexamples exist.)