Formal Techniques – 2020-07-08

Exercise 1. Let $\alpha : \mathcal{C} \xrightarrow{\leftarrow} \mathcal{A} : \gamma$ be a Galois connection. Prove that α, γ satisfy the adjunction property.

Exercise 2. Consider the following protocol excerpt written in the applied-pi notation.

(! . in X . out g(X) . ())) | (! . in Y . out h(Y) . ()) | out k . ()

Apply the control flow analysis to the protocol above, generating a tree automaton to over-approximate the message flow, as done by function gen(...). Provide a list of states for such automaton and the transitions among them. Make each state clearly related to a part of the protocol above.

Exercise 3. Formalize the following cryptographic protocol fragment using the applied-pi notation.

Initially, two symmetric keys k_1, k_2 are shared between Alice and Bob. Bob also knows a message m.

1) Alice generates and sends a nonce a to Bob, encrypting it using k_1 .

2) After receiving the nonce a, Bob generates his own nonce b, computes the XOR of both nonces c, and sends to Alice message m, encrypted with c (as a symmetric key).

3) Bob sends b to Alice, encrypting it with k_2 .

4) After all that, Alice sends to Bob the hash of message m.

Exercise 4. Formally prove the following formula exploiting the Curry-Howard isomorphism.

$$\forall p, q, r, s : \mathsf{Prop.} \ [(p \to (q \land r)) \to s] \to [(p \to q) \to [((p \to r) \lor s) \to s]]$$

Exercise 5. Let A be a DCPO, and define

$$K = \left\{ a \in A \mid \forall D \subseteq^{dir} A. \quad a \sqsubseteq \bigsqcup D \implies \exists d \in D. \ a \sqsubseteq d \right\}$$

where $D \subseteq^{dir} A$ means that D is a directed subset of A.

1. [50%] Find a counterexample (suitable A, k, x) to refute the following claim. Justify your answer.

"If $k \in K$ and $x \sqsubseteq k$, then $x \in K$."

2. [50%] Let $X \subseteq K$ be a finite set such that there exists $x = \bigsqcup^A X$. Prove that $x \in K$.