Formal Techniques - 2017-07-07

Exercise 1. Let A be a poset, and $f: A \rightarrow A$ be monotonic. Prove that the least prefixed point of f is also its least fixed point.
Exercise 2. Consider the following protocol excerpt written in the applied-pi notation.

$$
(\text { in } W \text {. out } \mathrm{f}(W) \cdot() \mid \text { out a .!. in } Y \text {. out } \mathrm{g}(Y) \cdot())
$$

Apply the control flow analysis to the protocol above, generating a tree automaton to over-approximate the message flow, as done by function gen (...). Provide a list of states for such automaton and the transitions among them. Make each state clearly related to a part of the protocol above.

Exercise 3. Consider the following tree automaton

$$
\begin{aligned}
& \text { @a } \rightarrow \text { k1, enc(@c, @b), dec(@a, @a) @b } \rightarrow \text { dec(@e, @d) } \\
& \text { @c } \rightarrow \text { enc(@f, @f) @d } \rightarrow \mathrm{k} 1 \text { @e } \rightarrow \text { enc(@d, @d) @f } \rightarrow \mathrm{m}
\end{aligned}
$$

and the rewriting rule

$$
\operatorname{dec}(\operatorname{enc}(M, K), K) \Rightarrow M
$$

Apply the completion algorithm to the above automaton, building an overapproximation for the languages associated to its states which is closed under rewriting. Assuming @a models the set of messages being exchanged over a public channel, state what can be concluded about the secrecy of message m.

Exercise 4. Formally prove the following formula exploiting the CurryHoward isomorphism.

$$
\forall p, q, r, s: \text { Prop. }[(p \wedge(q \vee r)) \rightarrow[((p \wedge q) \rightarrow s) \rightarrow[((p \wedge r) \rightarrow s) \rightarrow s]]]
$$

Exercise 5. Construct DCPOs A, B and a function $f: A \rightarrow A$ such that:

1. $B \subseteq A$ is a DCPO with the induced ordering,
2. f is Scott-continuous, and its restriction $\left.f\right|_{B}$ is $B \rightarrow B$ and Scottcontinuous (no proof is required for this point), and
3. for some $b \in B$, we have that $\left\{x \in B \mid f(x)=x \beth_{B} b\right\}$ is nonempty but has no minimum, yet $\left\{x \in A \mid f(x)=x \sqsupseteq_{A} b\right\}$ has a minimum.
Exercise 6. Let $\mathcal{C}, \mathcal{A}_{1}, \mathcal{A}_{2}$ be CLs, ordered by $\sqsubseteq_{\mathcal{C}}, \sqsubseteq_{\mathcal{A}_{1}}, \sqsubseteq_{\mathcal{A}_{2}}$ respectively. Assume these CLs are related by two Galois connections $\alpha_{i}: \mathcal{C} \leftrightarrows \mathcal{A}_{i}: \gamma_{i}$ for $i \in\{1,2\}$.
4. Construct a Galois connection $\alpha: \mathcal{C} \leftrightarrows\left(\mathcal{A}_{1} \times \mathcal{A}_{2}\right): \gamma$ exploiting the two Galois connections above, and prove it is such.
(Reminder: the product of two CLs has the pointwise ordering)
Now, take $\mathcal{C}=\mathcal{P}(\mathbb{Z})$, ordered by inclusion. Let $\mathcal{A}_{1}=\{\perp, 0,1, \ldots, 5, \top\}$, and $\mathcal{A}_{2}=\{\perp, 0,1, \ldots, 9, \top\}$, where different numbers are incomparable, and the rest of the elements are ordered in the natural way. Further consider

$$
\begin{array}{lll}
\gamma_{1}(\perp)=\emptyset & \gamma_{1}(n)=\{n+6 k \mid k \in \mathbb{Z}\} & \gamma_{1}(T)=\mathbb{Z} \\
\gamma_{2}(\perp)=\emptyset & \gamma_{2}(n)=\{n+10 k \mid k \in \mathbb{Z}\} & \gamma_{2}(T)=\mathbb{Z} \\
\alpha_{1}, \alpha_{2} \text { defined accordingly } &
\end{array}
$$

2. Consider the following properties on pairs $a_{1}, a_{2}, a_{3}, a_{4} \in\left(\mathcal{A}_{1} \times \mathcal{A}_{2}\right)$ where α, γ are from point 1 above. (Mind the strict inequalities)

$$
\begin{array}{ll}
\alpha\left(\gamma\left(a_{1}\right)\right)=a_{1} & \alpha\left(\gamma\left(a_{2}\right)\right) \sqsubset a_{2} \\
\alpha\left(\gamma\left(a_{3}\right)\right) \sqsupset a_{3} & \alpha\left(\gamma\left(a_{4}\right)\right) \text { can not be compared to } a_{4}
\end{array}
$$

For each $i \in\{1,2,3,4\}$, either provide a value for the pair a_{i} such that it satisfies its related property above, or prove that no such pair a_{i} exists.

