Formal Techniques – 2014-07-24

Exercise 1. State and prove the Kleene fixed point theorem.

Exercise 2. Consider the following protocol excerpt written in the applied-pi notation.

(! . in X . in Y . out enc(X, Y) . () | out m . in Z . out h(Z) . ())

Apply the control flow analysis to the protocol above, generating a tree automaton to over-approximate the message flow, as done by function gen(...). Provide a list of states for such automaton and the transitions among them. For each state, briefly hint to its relationship with the code.

Exercise 3. Consider the following tree automaton

$@a \to k1, enc(@b, @c), enc(@d, @e), dec(@a, @a)$	@b ightarrow k2
@c ightarrow k1	$@d \to m$
$@e \rightarrow k3, enc(@b, @f)$	$@f \rightarrow k3, k1$

and the rewriting rule

$$\mathsf{dec}(\mathsf{enc}(M,K),K) \Rightarrow M$$

Apply the completion algorithm to the above automaton, building an over-approximation for the languages associated to its states. Assuming **Qa** models the set of messages being exchanged over a public channel, state what can be concluded about the secrecy of message m.

Exercise 4. Formally prove the following formula exploiting the Curry-Howard isomorphism.

$$\forall p,q,r:\mathsf{Prop.}\ ((p\to r)\wedge (q\to r))\to ((p\lor q)\to r)$$

Exercise 5. Let (A, \sqsubseteq_A) be a CL, and $f \in (A \to A)$ be a monotonic function satisfying $f \circ f = f \sqsupseteq \operatorname{id}_A$ (pointwise). Let $B = f[A] \subseteq A$ and $\sqsubseteq_B = \bigsqcup_A \cap (B \times B)$. Prove that (B, \sqsubseteq_B) is a CL and that:

$$\forall X \subseteq B. \qquad \bigsqcup{}^{B} X = f\left(\bigsqcup{}^{A} X\right)$$

Try to be precise in your notation, annotating your operators with A or B when it matters.

Exercise 6. Let (A, \sqsubseteq_A) be a DCPO, and $f \in (A \to A)$ be a Scott-continuous function satisfying $f \circ f = f$. Let $B = f[A] \subseteq A$ and $\sqsubseteq_B = \bigsqcup_A \cap (B \times B)$. Prove that (B, \sqsubseteq_B) is a DCPO.

Try to be precise in your notation, annotating your operators with A or B when it matters.