Formal Techniques - 2023-06-23

Exercise 1. Informally describe the four $C T L$ formulae $\mathrm{AF} \phi, \mathrm{AG} \phi, \mathrm{EF} \phi, \mathrm{EG} \phi$ (where ϕ is atomic), providing for each one a brief description (1-3 lines), and one example where it holds.

Exercise 2. Consider the following protocol excerpt written in the applied-pi notation.
!. new X. out $\mathrm{f}(X) .($ in Y. out $\mathrm{g}(X, Y) .() \mid$ in Z.in W. out $\mathrm{h}(W, Z) \cdot())$
Apply the control flow analysis to the protocol above, generating a tree automaton to over-approximate the message flow, as done by function gen(...). Provide a list of states for such automaton and the transitions among them. Make each state clearly related to a part of the protocol above.

Exercise 3. Consider the following tree automaton

$$
\begin{aligned}
& @ a \rightarrow \operatorname{dec}(@ a, @ b), \text { enc }(@ f, @ g) @ b \rightarrow \operatorname{dec}(@ c, @ b), k 1 @ c \rightarrow \text { enc }(@ d, @ e) \\
& @ d \rightarrow k 2 \quad @ e \rightarrow k 1 \quad @ f \rightarrow m \quad @ g \rightarrow k 2, k 3
\end{aligned}
$$

and the rewriting rule

$$
\operatorname{dec}(\operatorname{enc}(M, K), K) \Rightarrow M
$$

Apply the completion algorithm to the above automaton, building an overapproximation for the languages associated to its states which is closed under rewriting. Assuming @a models the set of messages being exchanged over a public channel, state what can be concluded about the secrecy of m .

Exercise 4. Formally prove the following formula exploiting the CurryHoward isomorphism.

$$
\forall p, q, r, s: \operatorname{Prop} .(p \vee q) \rightarrow[(p \rightarrow(q \rightarrow s)) \rightarrow[(p \rightarrow s) \vee(q \rightarrow s)]]
$$

Exercise 5. Let \mathcal{A} be a $C L$, and let $f, g, h: \mathcal{A} \rightarrow \mathcal{A}$ be three Scott-continuous functions, with $h(a)=f(a) \sqcap g(a)$ for all $a \in \mathcal{A}$. Writing fix for the least fixed point operator, let

$$
x=\operatorname{fix}(h) \quad y=\bigsqcup_{n \geq 0} f^{n}(x)
$$

1. [10\%] Show that $\bigsqcup_{n \geq 0} f^{n}(x)$ is the supremum of a directed set.
2. [90\%] Show that $y=\operatorname{fix}(f)$.
3. (Bonus) Show that, in general, when b is an arbitrary element of \mathcal{A}, then $\bigsqcup_{n \geq 0} f^{n}(b)$ does not always have to be a fixed point of f.
