Formal Techniques – 2020-06-11

Exercise 1. State and prove Kleene's fixed point theorem.

Exercise 2. Consider the following tree automaton

and the rewriting rule

 $\mathsf{dec}(\mathsf{enc}(M,K),K) \Rightarrow M$

Apply the completion algorithm to the above automaton, building an overapproximation for the languages associated to its states which is closed under rewriting. Assuming @a models the set of messages being exchanged over a public channel, state what can be concluded about the secrecy of message m.

Exercise 3. Consider the following protocol excerpt written in the applied-pi notation.

$$\begin{pmatrix} out a . in X . ! . (out b . () | in Z . out g(X, Z) . ()) \\ in Y . out f(Y) . () \end{pmatrix}$$

Apply the control flow analysis to the protocol above, generating a tree automaton to over-approximate the message flow, as done by function gen(...). Provide a list of states for such automaton and the transitions among them. Make each state clearly related to a part of the protocol above.

Exercise 4. Formally prove the following formula exploiting the Curry-Howard isomorphism.

 $\forall p, q, r, s, t : \mathsf{Prop.} \ (p \to (q \land r)) \to [((s \lor r) \to t) \to [(p \lor s) \to (q \lor t)]]$

Exercise 5.

- 1. [25%] Let A be a poset, and B be a subposet of A (hence, $B \subseteq A$ and $(\sqsubseteq_B) = (\sqsubseteq_A) \cap B^2$). Let $X \subseteq B$ be any set such that there exists $x = \bigsqcup^A X$. Prove that, if $x \in B$, then there exists $\bigsqcup^B X$ and that coincides with x.
- 2. [10%] Let A, B, C be DCPOs, and let $\alpha : A \to C$ and $\beta : B \to C$ be two Scott-continuous functions.

A triple (X, f_A, f_B) is said to be a cone when X is a DCPO, $f_A : X \to A$ and $f_B : X \to B$ are Scott-continuous, and $\alpha \circ f_A = \beta \circ f_B$.

Construct a cone (X, f_A, f_B) where $X \subseteq A \times B$ is a subposet and $\alpha \circ f_A = \beta \circ f_B$ directly holds "by definition of X". Your definition must also satisfy the property below.

- 3. [15%] Prove that, if (Y, g_A, g_B) is a cone, then there is a unique Scottcontinuous $m: Y \to X$ where $f_A \circ m = g_A$ and $f_B \circ m = \overline{g_B}$.
- 4. [50%] Verify that the above subposet $X \subseteq A \times B$ is indeed a DCPO.