Formal Techniques - 2018-06-28

Exercise 1. Informally describe the four CTL formulae AF $\phi, \operatorname{AG} \phi, \mathrm{EF} \phi, \mathrm{EG} \phi$ (where ϕ is atomic), providing for each one a brief description (1-3 lines), and one example where it holds.

Exercise 2. Consider the following protocol excerpt written in the applied-pi notation.
(in W.!. out $\mathrm{f}(W)$. () | in X. out $h(X)$. in Y. out $\mathrm{g}(X, Y)$. ())
Apply the control flow analysis to the protocol above, generating a tree automaton to over-approximate the message flow, as done by function gen(...). Provide a list of states for such automaton and the transitions among them. Make each state clearly related to a part of the protocol above.

Exercise 3. Formalize the following cryptographic protocol fragment using the applied-pi notation.
Initially, Alice knows symmetric keys $\mathrm{k}_{1}, \mathrm{k}_{2}$. Further, Alice and Bob share a symmetric key k_{s}.

1) Alice sends k_{1} to Bob, encrypting it with k_{s}.
2) Then, Bob generates a fresh nonce N , and sends N to Alice, encrypting it with k_{1}.
3) Alice answers by generating a message containing two items: the key k_{2} and the hash of N encrypted with k_{2}. The whole message (a pair) is encrypted using k_{s}.
4) Bob finally retrieves the hash of N from the received message, and sends such hash to Alice (without encrypting it).
Exercise 4. Formally prove the following formula exploiting the Curry-Howard isomorphism.

$$
\forall p, q, r, s: \text { Prop. }((p \wedge q) \rightarrow s) \rightarrow((q \vee r) \rightarrow(r \vee(p \rightarrow s)))
$$

Exercise 5. Let $\alpha: \mathcal{C} \leftrightarrows \mathcal{A}: \gamma$ be a Galois connection between two CLs \mathcal{C}, \mathcal{A}.

1. Prove that $\gamma \circ \alpha \circ \gamma=\gamma$.
2. Define $\delta: \mathcal{A} \rightarrow \mathcal{A}$ as the function $\delta(a)=\rceil\left\{a^{\prime} \mid \gamma\left(a^{\prime}\right)=\gamma(a)\right\}$. Prove that $\delta=\alpha \circ \gamma$.

Exercise 6.

1. Below, we write $R \subseteq{ }^{\text {rs }} X^{2}$ when R is a binary relation over set X, and R is reflexive $(\forall x \in X . x R x)$ and symmetric $(\forall x, y \in X . x R y \Longrightarrow y R x)$.
For any $R \subseteq{ }^{r s} X^{2}$, define $X_{R}=\{A \subseteq X \mid \forall x, y \in A . x R y\}$.
Prove that $\left(X_{R}, \subseteq\right)$ is a DCPO with $\bigsqcup=\bigcup$ and $\perp=\emptyset$.
2. Let $A \sim_{R} B$ mean $\forall a \in A, b \in B$. aRb. For any two relations $R, S \subseteq{ }^{r s}$ X^{2}, define
$S t(R, S)=\left\{\begin{array}{l|l}f: X_{R} \rightarrow X_{S} & \left.\begin{array}{l}f \text { Scott-continuous } \wedge \\ \forall A, B \in X_{R} . A \sim_{R} B \Longrightarrow f(A \cap B)=f(A) \cap f(B)\end{array}\right\}\end{array}\right.$
Prove that, if $R, S, T \subseteq{ }^{r s} X, f \in S t(R, S)$, and $g \in S t(S, T)$, then $g \circ f \in S t(R, T)$.
