Formal Techniques - 2017-06-06

Exercise 1. Provide the definitions of upper bound, maximum, and supremum. Then, provide the statements of the Tarski's fixed point theorem and the Kleene's fixed point theorem.

Exercise 2. Consider the following protocol excerpt written in the applied-pi notation.

```
(in W . out f(W).()
| in X.(in Y. out g(Y,X).()| in Z . out h(X,Z).()) )
```

Apply the control flow analysis to the protocol above, generating a tree automaton to overapproximate the message flow, as done by function gen(...). Provide a list of states for such automaton and the transitions among them. Make each state clearly related to a part of the protocol above.
Exercise 3. Formalize the following cryptographic protocol fragment using the applied-pi notation.
Initially, an asymmetric key pair is known by Alice, and another one is known by Bob. Further, Alice and Bob share a symmetric key K.

1) Alice and Bob exchange their own public keys, protecting the exchange by encrypting their communications with K .
2) Then, Alice generates a fresh nonce N , and sends N to Bob after having encrypted it with Bob's public key.
3) Bob answers by generating a fresh symmetric "session" key S, and sending back the pair N, S to Alice, encrypted using Alice's public key.
4) Alice sends message m to Bob, encrypted with the session key S .
5) Bob answers with the hash $\mathrm{h}(\mathrm{m})$.

Exercise 4. Formally prove the following formula exploiting the Curry-Howard isomorphism.

$$
\forall p, q, r, s: \operatorname{Prop} .(p \rightarrow q) \rightarrow((q \rightarrow r) \rightarrow(((p \rightarrow r) \rightarrow s) \rightarrow s))
$$

Exercise 5. Consider the $C L s \mathcal{C}=\mathcal{P}(\mathbb{Z})$, and $\mathcal{A}=\mathcal{P}(\{0,1,2\})$, both ordered by (\subseteq). Define

$$
\begin{array}{ll}
\alpha: \mathcal{C} \rightarrow \mathcal{A} & \alpha(C)=\{x \bmod 3 \mid x \in C\} \\
\gamma: \mathcal{A} \rightarrow \mathcal{C} & \gamma(A)=\{y+3 k \mid y \in A \wedge k \in \mathbb{Z}\} \\
f: \mathcal{C} \rightarrow \mathcal{C} & f(C)=\{2\} \cup\{2 \cdot x \mid x \in C\}
\end{array}
$$

1. [15\%] Verify that α, γ form a Galois connection. (You can neglect to check continuity.)
2. $[15 \%]$ Determine the least fixed point C of f.
3. [50\%] Define the best correct approximation $f \#$ of f, providing a small table (or drawing) showing the result of $f^{\#}$ on all the elements of its domain.
4. [10\%] Determine the least fixed point A of f \#.
5. [10\%] Discuss how we can compare C and A (one line suffices).

Exercise 6. For each $i \in \mathbb{N}$, let $\left(A_{i}, \sqsubseteq_{i}\right)$ be a DCPO equipped with a bottom element \perp_{i}, and let $f_{i}: A_{i+1} \rightarrow A_{i}$ be a Scott-continuous function. Then, consider the following poset B under the pointwise ordering \sqsubseteq_{B} :

$$
B=\left\{\vec{b} \in \prod_{i \in \mathbb{N}} A_{i} \mid \forall i \in \mathbb{N} . f_{i}\left(b_{i+1}\right)=b_{i}\right\}
$$

Prove that:

1. $[20 \%]\left(B, \sqsubseteq_{B}\right)$ is a $D C P O$, where suprema are taken pointwise.
2. [80\%] B has a bottom element \perp_{B}.
(Suggestion: for \perp_{B}, map each \perp_{k} with $k \geq i$ into an element $a_{i, k} \in A_{i}$, exploiting the available functions. Then, consider $X_{i}=\left\{a_{i, k} \mid k \geq i\right\} \subseteq A_{i}$.)
