Exercise 1. Let (A, \sqsubseteq) be a poset, and let $B \subseteq A$ be such that $\bigsqcup B$ exists. Prove that, for any $x \in A$:

 $| B \sqsubseteq x \iff \forall b \in B. \ b \sqsubseteq x$

Exercise 2. Formalize the following cryptographic protocol fragment using the applied-pi notation.

1) Alice (A) and Bob (B) share two symmetric keys K1, K2. A chooses a random nonce NA, hashes it, and sends the result to B after having encrypted it with K1. B performs the analogous steps, using his own nonce NB and using K2 for encryption.

2) After A has received the message from B, she sends NA to B, again after having encrypted it using K1. B does the same using NB and K2.

3) After receiving NB with the last message, A checks whether hashing the received NB indeed matches the hash she received before. In such case, she outputs the unencrypted XOR of NA and NB.

Exercise 3. Consider the following tree automaton

 $\begin{array}{ll} @a \rightarrow k1, enc(@b, @c), dec(@a, @a) & @b \rightarrow enc(@f, @e), enc(@g, @d) \\ @c \rightarrow k1, k2 & @d \rightarrow k2, k3 \\ @e \rightarrow k1, k3 & @f \rightarrow m1 \\ @g \rightarrow m2 & \end{array}$

and the rewriting rule

 $\mathsf{dec}(\mathsf{enc}(M,K),K) \Rightarrow M$

Apply the completion algorithm to the above automaton, building an over-approximation for the languages associated to its states. Assuming @a models the set of messages being exchanged over a public channel, state what can be concluded about the secrecy of messages m1,m2.

Exercise 4. Formally prove the following formula exploiting the Curry-Howard isomorphism.

$$\forall p, q, r : \mathsf{Prop.} ((p \to r) \to r) \to ((p \to q) \to ((q \to r) \to r))$$

Exercise 5. Let $\alpha \in (\mathcal{C} \to \mathcal{A})$ and $\gamma \in (\mathcal{A} \to \mathcal{C})$ be two <u>monotonic</u> functions between two complete lattices \mathcal{A}, \mathcal{C} . Assume that

 $\forall a \in \mathcal{A}, c \in \mathcal{C}. \quad \alpha(c) \sqsubseteq_{\mathcal{A}} a \iff c \sqsubseteq_{\mathcal{C}} \gamma(a)$

Prove that α is Scott-continuous.

Exercise 6. Let A be a DCPO with $a \perp$ element. Write $F = [A \rightarrow A]$ for its associated DCPO of Scott-continuous functions. Given $n \in \mathbb{N}$, consider the operator which iterates a function n times:

$$iter_n \in (F \to F)$$

 $iter_n(f) = f^n$

Prove that $iter_n$ is Scott-continuous for any $n \in \mathbb{N}$. Then, define:

$$\begin{aligned} fix \in (F \to A) \\ fix(f) &= minimum \text{ fixed point of } f \end{aligned}$$

Prove that fix is Scott-continuous.

Hint: you might need to exploit the fact that the composition operator $\circ \in (F \times F \to F)$ *is Scott-continuous.*