Formal Techniques - 2014-06-23

Exercise 1. Let (A, \sqsubseteq) be a poset, and let $B \subseteq A$ be such that $\bigsqcup B$ exists. Prove that, for any $x \in A$:

$$
\bigsqcup B \sqsubseteq x \quad \Longleftrightarrow \quad \forall b \in B . b \sqsubseteq x
$$

Exercise 2. Formalize the following cryptographic protocol fragment using the applied-pi notation.

1) Alice (A) and Bob (B) share two symmetric keys $K 1, K 2$. A chooses a random nonce $N A$, hashes it, and sends the result to B after having encrypted it with K1. B performs the analogous steps, using his own nonce NB and using K2 for encryption.
2) After A has received the message from B, she sends $N A$ to B, again after having encrypted it using $K 1 . B$ does the same using $N B$ and $K 2$.
3) After receiving $N B$ with the last message, A checks whether hashing the received NB indeed matches the hash she received before. In such case, she outputs the unencrypted XOR of NA and NB.
Exercise 3. Consider the following tree automaton

$$
\begin{array}{ll}
@ a \rightarrow k 1, \text { enc }(@ b, @ c), \operatorname{dec}(@ a, @ a) & @ b \rightarrow \text { enc }(@ f, @ e), \text { enc }(@ g, @ d) \\
@ c \rightarrow k 1, k 2 & @ d \rightarrow k 2, \text { k3 } \\
@ e \rightarrow k 1, k 3 & @ f \rightarrow m 1 \\
@ g \rightarrow m 2 &
\end{array}
$$

and the rewriting rule

$$
\operatorname{dec}(\operatorname{enc}(M, K), K) \Rightarrow M
$$

Apply the completion algorithm to the above automaton, building an over-approximation for the languages associated to its states. Assuming @a models the set of messages being exchanged over a public channel, state what can be concluded about the secrecy of messages $\mathrm{m} 1, \mathrm{~m} 2$.

Exercise 4. Formally prove the following formula exploiting the Curry-Howard isomorphism.

$$
\forall p, q, r \text { : Prop. }((p \rightarrow r) \rightarrow r) \rightarrow((p \rightarrow q) \rightarrow((q \rightarrow r) \rightarrow r))
$$

Exercise 5. Let $\alpha \in(\mathcal{C} \rightarrow \mathcal{A})$ and $\gamma \in(\mathcal{A} \rightarrow \mathcal{C})$ be two monotonic functions between two complete lattices \mathcal{A}, \mathcal{C}. Assume that

$$
\forall a \in \mathcal{A}, c \in \mathcal{C} . \quad \alpha(c) \sqsubseteq_{\mathcal{A}} a \Longleftrightarrow c \sqsubseteq_{\mathcal{C}} \gamma(a)
$$

Prove that α is Scott-continuous.
Exercise 6. Let A be a DCPO with a \perp element. Write $F=[A \rightarrow A]$ for its associated $D C P O$ of Scott-continuous functions. Given $n \in \mathbb{N}$, consider the operator which iterates a function n times:

$$
\begin{aligned}
& \text { iter }_{n} \in(F \rightarrow F) \\
& \operatorname{iter}_{n}(f)=f^{n}
\end{aligned}
$$

Prove that iter $_{n}$ is Scott-continuous for any $n \in \mathbb{N}$. Then, define:

$$
\begin{aligned}
& \text { fix } \in(F \rightarrow A) \\
& \text { fix }(f)=\text { minimum fixed point of } f
\end{aligned}
$$

Prove that fix is Scott-continuous.
Hint: you might need to exploit the fact that the composition operator $\circ \in$ $(F \times F \rightarrow F)$ is Scott-continuous.

