Computability Final Test - 2014-07-07

Notes.

- Answer both theory questions, and choose and solve two exercises, only. Solving more exercises results in the failure of the test.
- To pass the exam you need to provide a reasonable contribution in both Theory and Exercises parts.
- Exercises with higher number award more points. To achieve a score ≥ 28 you have to solve an exercise marked with \star below.
- Significantly wrong answers will result in negative scores.
- Always provide a justification for your answers.

Reminder: when equating the results of partial functions (as in $\phi_{i}(3)=\phi_{i}(5)$), we mean that either 1) both sides of the equation are defined, and evaluate to the same natural number, or 2) both sides are undefined.

Theory

Question 1. Prove the Rice theorem.
Question 2. Prove that $A \in \mathcal{R}$ if and only if $A, \bar{A} \in \mathcal{R E}$.

Exercises

Exercise 3. Let f be an arbitrary total recursive function. Prove whether

$$
A=\left\{n \mid \exists x \in \mathbb{N} . f(x)<n \wedge \phi_{n}(x+1)=f(x)\right\} \in \mathcal{R E}
$$

Solution (sketch). Consider the property

$$
p(x, n)=" f(x)<n \wedge \phi_{n}(x+1)=f(x) "
$$

We have that $p \in \mathcal{R E}$ since we can write a semiverifier as follows:

$$
\begin{aligned}
& S_{p}(x, n): \\
& \quad z:=f(x) \\
& \quad \text { run } \phi_{n}(x+1) \text { and take its result } w \\
& \text { if }(z<n \wedge w=z) \text { then } \\
& \quad \text { return } 1 \\
& \quad \text { else } \\
& \quad \text { loop forever }
\end{aligned}
$$

Let us check that this is indeed a semiverifier. First, note that f being total implies that $z:=f(x)$ will always halt, and that z will be equal to $f(x)$.

If $p(x, n)$ holds, then $f(x)<n$ and $\phi_{n}(x+1)=f(x)$, hence $\phi_{n}(x+1)$ is defined since $f(x)$ is such. So, running $\phi_{n}(x+1)$ will halt returning a value w
equal to $f(x)$. Hence, the program will reach the if line, and the if guard will evaluate to true, causing S_{p} to return 1, as it should.

If $p(x, n)$ does not hold, then either $f(x) \geq n$ (since f is total we do not need to consider the case in which $f(x)$ diverges) or $\phi_{n}(x+1) \neq f(x)$. We consider two cases. 1) If $\phi_{n}(x+1)$ is undefined, S_{p} will diverge when evaluating that (as it should). 2) If $\phi_{n}(x+1)$ is defined, we have two sub-cases: either it returns $w \neq f(x)$ or $f(x) \geq n$. In both sub-cases, the if guard will evaluate to false, making S_{p} diverge in the last line.

So, we conclude that $p \in \mathcal{R E}$. Since A is defined adding an existential quantification on top of p, A is also $\mathcal{R E}$.
Exercise 4. Prove whether

$$
B=\left\{n \mid \exists x \in \mathbb{N} . n \cdot \phi_{n}(x)=42\right\} \in \mathcal{R}
$$

Solution (sketch). We have $B \subseteq\{0, \ldots, 42\}$, since if $n>42$ we have that $n \cdot \phi_{n}(x)$ is either undefined, 0 , or $\geq n>42$. This is because $\phi_{n}(x)$ is either undefined, 0 , or ≥ 1.

So, B is finite, hence recursive.
Exercise 5. Below, a total function $f \in \mathbb{N} \rightarrow \mathbb{N}$ is given. Prove that $f \notin \mathcal{R}$.

$$
f(n)= \begin{cases}\phi_{n}(n) & \text { if } n \in \mathrm{~K} \\ 0 & \text { otherwise }\end{cases}
$$

Hint: also consider $h(n)=\#\left(\lambda x . \tilde{\chi}_{\mathrm{K}}(n)\right)$.
Solution (sketch). By contradiction, assume $f \in \mathcal{R}$. Function h is well defined ($\tilde{\chi}_{K}$ being recursive partial), so h is a (total) recursive function by the s-m-n theorem.

Since both f and h are recursive, $f \circ h$ is also such. We have:

$$
\begin{aligned}
f(h(n)) & = \begin{cases}\phi_{h(n)}(h(n)) & \text { if } h(n) \in \mathrm{K} \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\phi_{h(n)}(h(n)) & \text { if } \phi_{h(n)}(h(n)) \text { is defined } \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\tilde{\chi}_{\mathrm{K}}(n) & \text { if } \tilde{\chi}_{\mathrm{K}}(n) \text { is defined } \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}1 & \text { if } n \in \mathrm{~K} \\
0 & \text { otherwise }\end{cases} \\
& =\chi_{\mathrm{K}}(n)
\end{aligned}
$$

Hence, $\mathrm{K} \in \mathcal{R}$ - a contradiction.
Exercise 6. $\star[5 \%$ score $]$ Prove whether it is possible to construct $f \in(\mathbb{N} \rightsquigarrow \mathbb{N})$ such that $f \in \mathcal{R}, f \circ f \notin \mathcal{R}$, and $f \circ f \circ f \in \mathcal{R}$. [95\% score] Then, prove whether it is possible to construct $f \in(\mathbb{N} \rightsquigarrow \mathbb{N})$ such that $f \notin \mathcal{R}$, $f \circ f \in \mathcal{R}$, and $f \circ f \circ f \notin \mathcal{R}$. (Hint: one could look for functions also satisfying $f \circ f=\mathrm{id}$).

Solution (sketch). Intentionally omitted.

