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General Information

These notes are meant to be a short summary of the topics covered in my
Computability course kept in 2008, 2010, 2011 and 2012 in Trento. Students
are welcome to use these notes, provided they understand the following.

• These notes are work in progress. I will update and expand them, so
at any time (but the very end of the course) they do not comprise all
the topics which are needed for the exam. As a consequence, please
do not rely on an old version of these notes.

• You might still want to refer to the books for some parts. I will try to
provide suitable references in the notes.

• While I tried to include all the relevant technical definitions and results
in these notes, at the moment there is only little discussion about what
is computability and why we want to study it.

• Reporting errors in these notes will be awarded.

In the margins of these notes, you will find markers for those definitions,
statements and proofs which will be asked during the exam. For example:

• This is a statement you need to know for the exam. You will not beStatement
asked to prove it, but you may be asked to apply it to some concrete
case, or otherwise to prove you understand it and its direct conse-
quences.

• This is a statement you need to know for the exam. You can be askedProof
to provide a proof for it (such a proof is included in these notes).

• Definitions to remember are marked as this.Definition

Also, please remember the following, taken from ESSE3:

Prerequisites: understanding of mathematical proofs; basic no-
tions of set theory; programming skills.

Exam questions often implicitly test you on the above skills as well.

Roberto Zunino
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Chapter 1

Introduction

What is Computability?

Broadly speaking, Computability is a discipline which studies the theo-
retical limits of computer programming. A main purpose of it is to under-
stand which tasks can be performed by a program (hence “computable”),
and which instead are so hard that no program is able to perform them. As
such, its results can be roughly divided in positive (proving that something
can be computed by a program) and negative (proving that no such program
exists).

Positive results are the easiest to establish. Indeed, it is sufficient to
exhibit a program and justifying that it really solves a given task (“this pro-
cedure correctly sorts the input array”). Negative results are much harder
to prove, instead, since they require to rule out the possibility that such
a program might exist. Establishing a negative result can not obviously
be done by examining every single program, since we have infinitely many
of them. Since a non trivial approach is needed for negative results, these
results in Computability are by far the most important ones.

Negative results are also made strong by the fact that Computability
theory puts no constraints on the amount of resources which a program can
demand. A program is allowed to require any amount of memory, including
those which are impossible to obtain in practice (e.g. a terabyte for each
atom in the known universe). Similarly, a program is allowed to run for a
huge amount of time before it completes (e.g. the amount of time between
the Big Bang and now). The main point in accepting these vastly inefficient
programs is to make strong our negative results. Indeed, if we can prove
that a task can not be solved by any program, even in presence of unlimited
resources, then we can surely infer that no real-world computer can hope to
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2 CHAPTER 1. INTRODUCTION

solve that task. In other words, when we prove a task to be non computable,
we know it will never be solved by a computer, no matter how powerful the
computing hardware can become in the future.

These notes are organized as follows.

In Chapter 1 we provide some mathematical preliminaries. There we
also discuss the diagonalization proof technique, and use it to construct the
first example of a non-computable task.

In Chapter 2 we focus on one specific, albeit unusual, programming lan-
guage: the untyped λ-calculus. We first use it to establish some positive
results. Some of these are expected (e.g., multiplication is computable),
while others are less so (self-interpreter, Kleene’s fixed point theorem). Fi-
nally, a strong general tool to prove negative results is provided: Rice’s
theorem.

In Chapter 3 we start abstracting away from the choice of a programming
language. We shall characterize there the set of those functions which are
computable, i.e. can be implemented by some program. We shall provide
a definition of computable function which does not rely on the λ-calculus,
yet prove it equivalent to the one given for that language. We conclude
by stating that a similar result also holds in all the common programming
languages.

In Chapter 4 we extend the theory of computable functions. We re-state
Kleene’s fixed point theorem and Rice’s theorem in a more general setting.
We then proceed to investigate recursive sets, recursively enumerable sets,
and m-reductions. We conclude by stating the Rice-Shapiro theorem, a
powerful general tool to prove that some sets are not recursively enumerable.

1.1 Logic Notation

We shall now recall some preliminary facts which we shall use in the rest of
the course. Most proofs here are left as an exercise to the reader: you should
be able to do this with a moderate effort. Moreover, you should test your
formula-understanding skills by performing some exercises in this section.
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Exercise 1. Describe the meaning of the formulas below.

p ∨ ¬p excluded middle

¬(p ∨ q) ⇐⇒ (¬p ∧ ¬q) De Morgan

¬(p ∧ q) ⇐⇒ (¬p ∨ ¬q) De Morgan

(p =⇒ q) ⇐⇒ (¬p ∨ q) classical implication

(p ∧ q =⇒ r) ⇐⇒ (p =⇒ (q =⇒ r)) export/import

(p =⇒ q) ⇐⇒ (¬q =⇒ ¬p) contraposition

(p ⇐⇒ q) ⇐⇒ (¬p ⇐⇒ ¬q) contraposition

(p ∧ q) ∨ r ⇐⇒ (p ∨ r) ∧ (q ∨ r) distribution

(p ∨ q) ∧ r ⇐⇒ (p ∧ r) ∨ (q ∧ r) distribution

(¬∀x. p(x)) ⇐⇒ (∃x.¬p(x)) De Morgan

(¬∃x. p(x)) ⇐⇒ (∀x.¬p(x)) De Morgan

(p ∧ (∀x. q(x))) ⇐⇒ (∀x. p ∧ q(x)) scope extrusion (x not in p)

(p ∨ (∀x. q(x))) ⇐⇒ (∀x. p ∨ q(x)) scope extrusion (x not in p)

(p ∧ (∃x. q(x))) ⇐⇒ (∃x. p ∧ q(x)) scope extrusion (x not in p)

(p ∨ (∃x. q(x))) ⇐⇒ (∃x. p ∨ q(x)) scope extrusion (x not in p)

(p =⇒ (∀x. q(x))) ⇐⇒ (∀x. (p =⇒ q(x))) scope extrusion (x not in p)

(p =⇒ (∃x. q(x))) ⇐⇒ (∃x. (p =⇒ q(x))) scope extrusion (x not in p)

((∀x. p(x)) =⇒ q) ⇐⇒ (∃x. (p(x) =⇒ q)) scope extrusion (x not in q)

((∃x. p(x)) =⇒ q) ⇐⇒ (∀x. (p(x) =⇒ q)) scope extrusion (x not in q)

∃y.∀x. p(x, y) =⇒ ∀x.∃y. p(x, y)

∀x.∃y. p(x, y) 6=⇒ ∃y.∀x. p(x, y)

∃!x. p(x) ⇐⇒ ∃c. (∀x. (p(x) ⇐⇒ x = c)) uniqueness

∃!x. p(x) ⇐⇒ (∃x. p(x)) ∧ (∀x, y. (p(x) ∧ p(y) =⇒ x = y))

Exercise 2. Convince yourself that the formulas above indeed hold.

1.2 Set Theory

Let A,B, . . . ,X, Y, Z be sets. Below, we provide standard definitions and
examples. I recommend you read them and check they match with your
intuition.
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∀x ∈ X. p(x) ⇐⇒ (∀x. x ∈ X =⇒ p(x))

∃x ∈ X. p(x) ⇐⇒ (∃x. x ∈ X ∧ p(x))
⋃

X =
⋃

Y ∈X

Y = {y|∃Y ∈ X. y ∈ Y }

⋃

{{1, 2, 3}, {4, 5}, ∅} = {1, 2, 3, 4, 5}

A ∪B =
⋃

{A,B} = {x|x ∈ A ∨ x ∈ B}
⋂

X =
⋂

Y ∈X

Y = {y|∀Y ∈ X. y ∈ Y }

⋂

{{1, 2, 3}, {3, 4, 5}} = {3}

A ∩B =
⋂

{A,B} = {x|x ∈ A ∧ x ∈ B}

A \B = {x|x ∈ A ∧ x 6∈ B}

X ⊆ Y ⇐⇒ ∀x ∈ X.x ∈ Y

P(A) = {B|B ⊆ A}

Cartesian product We shall use ordered pairs 〈x, y〉, as well as ordered
tuples. The cartesian product is then defined in the usual way.

〈x, y〉 = 〈x′, y′〉 ⇐⇒ (x = x′ ∧ y = y′)

X × Y = {〈x, y〉|x ∈ X ∧ y ∈ Y }

Note that cartesian product can be used to model some kinds of data
in programming. For instance, imagine that a sensor can be queried so to
obtain the current temperature and pressure. In that case we can represent
the set of possible answers as Temp × Press. If both are modelled as real
numbers, then R× R represents the result.

Exercise 3. Define ∀〈x, y〉 ∈ Z. p(x, y) using the notation seen above.

Disjoint union Suppose that an area is filled with two kinds of sensors.
One kind is able to measure the temperature, while the other one mea-
sures the pressure. Querying any one of them results in an answer such as
“temp: 300.4” or “press: 1334.12”. We could model the whole set of
possible answers using Temp∪Press, but if both are real numbers this would
result in R ∪ R = R which does not really capture the information present
in the answers. Indeed, beyond the numeric values, the answers reveal more
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information, i.e. whether that value is a temperature or a pressure. A better
modelling could then use two “tags” to distinguish the two copies of R, as
follows:

{〈temp, x〉|x ∈ R} ∪ {〈press, x〉|x ∈ R}

where temp, press are distinct constants, whose value is immaterial, and
whose only purpose is to force the above sets apart. We can indeed pick
these tags to be 0 and 1. The disjoint union above will be denoted with
Temp ⊎ Press, following the general definition below.

A ⊎B = {〈0, a〉|a ∈ A} ∪ {〈1, b〉|b ∈ B}

Definition 4. For our purposes, the set of functions from a set A to a set
B, written (A→ B) is defined as

(A→ B) = {f |f ⊆ A×B ∧ ∀a ∈ A.∃!b ∈ B. 〈a, b〉 ∈ f}

The domain of f ∈ (A→ B) is dom(f) = {a|〈a, b〉 ∈ f} = A. The range of
f ∈ (A→ B) is ran(f) = {b|〈a, b〉 ∈ f} ⊆ B.

So, a function is a set of pairs, mapping each element a of its domain A
to exactly one element f(a) of its range (some subset of B).

Definition 5. A function f is injective (or one-to-one) when

∀x, y ∈ dom(f). f(x) = f(y) =⇒ x = y

Exercise 6. Prove the following to be equivalent to f being injective.

f−1 ∈ (ran(f)→ dom(f)) where f−1 = {〈b, a〉|〈a, b〉 ∈ f}

We shall often deal with partial functions.

Definition 7. The set of partial functions (A B) is defined as Definition

(A B) = {f |∃A′ ⊆ A. f ∈ (A′ → B)}

The domain of partial function f ∈ (A  B) is therefore a subset of
A. This means that the expression f(a) when a ∈ A is actually undefined
whenever a is not in dom(f). In informal terms, a partial function is a
function that might fail to deliver any result. Formally, while a “true”
function returns exactly one result, a partial function returns at most one
result.

Sometimes we shall use the term total function for a function f ∈ (A→
B) to stress the fact that f is completely defined on A, i.e. dom(f) = A.
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Exercise 8. Try to classify the following operations as “partial” or “total”.
Be precise on what A and B are in your model.

• addition,subtraction,multiplication,division on natural numbers

• compiling a Java program

• compiling a Java program, then running it and taking its output

• downloading a file from a server

• executing a COMMIT SQL statement

Definition 9. A function f ∈ (A→ B) is said to be surjective (or “onto”)
when ran(f) = B. An injective and surjective function is said to be bijective
(or a bijection, or a one-to-one correspondence).

Note. If f is a partial function, arguing whether f is a total function is
meaningless unless the set A is clear from the context: every partial f is a
total function in (dom(f)→ ran(f)), for instance.

Note 2. Similarly, if f is a function, arguing whether f is surjective is
meaningless unless the set B is clear from the context: every f is surjective
in (dom(f)→ ran(f)).

Note 3. The same holds for bijections.

Definition 10. The composition of two partial functions f, g is defined as

(f ◦ g)(x) = f(g(x))

Note that, whenever g(x) is undefined, so is f(g(x)).

Exercise 11. Let A,B,C be sets, and let g ∈ (A→ B) and f ∈ (B → C).
Prove that

• If f and g are injective, then f ◦ g is injective.

• If f and g are surjective, then f ◦ g is surjective.

• If f and g are bijections, then f ◦ g is a bijection.
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1.2.1 Further Notation
Definition

For this course, we shall use

N = {0, 1, 2, . . .}

Ā = N \ A

χA(x) =

{

1 if x ∈ A
0 otherwise

χ̃A(x) =

{

1 if x ∈ A
undefined otherwise

The (total) function χA is called the characteristic function of the set A.
Similarly, the partial function χ̃A is called the semi-characteristic function
of A.

1.3 Induction

Many concepts in computer science (and mathematics) are defined through
some sort of inductive definition. Similarly, many useful properties are often
proved by exploiting some induction principle.

In this section, we survey some different, yet equivalent, ways to present
an inductive definition. Students which have no or little background on
these topics may find some of these hard to understand at the beginning.
Also note that a deep understanding of these is not strictly necessary for the
rest of the course1. As a guideline, as long as you are able to solve Ex. 15
below, you should be able to understand every other use of induction in
these notes.

Below, we provide an inductive definition for the set of natural numbers
N. This is done in several different ways, so that the reader can get used
to all of these. Some informal argument supporting the fact that these
definition indeed match our intuitive notion of N is provided.

Definition 12. The set of natural numbers N can be equivalently defined as
follows:

• (Informal definition) N = {0, 1, 2, 3, 4, . . .}

1 In spite of this, it is my opinion that each graduating Computer Science student
should be rather knowledgeable with induction techniques, as these play such a huge rôle
in our discipline.
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• (Through inductive inference rules) We let N be the set of those ele-
ments that can be generated by the following inference rules: (below, s
is a symbol for the successor function “+1”)

0 ∈ N

n ∈ N

s(n) ∈ N

Intuition: the rules above can generate only natural numbers since we
can only use 0 and the successor function s; vice versa, any natural
number n can be constructed by starting with the first rule and then
applying the second one n times.

• (Through the so-called “least prefixed-point” property) Let R̂ be the
following function:

R̂(X) = {0} ∪ {s(n)|n ∈ X}

Then, we let N be the least prefixed point of R̂, i.e.

N =
⋂

{X|R̂(X) ⊆ X} ∧ R̂(N) ⊆ N

Intuition: the function R̂(X) applies the inference rules above once
to the elements of X. Hence, N is the least set that is closed under
application of R̂.

• (Through the so-called “least fixed-point” property) Let R̂ as above.
Then, N is the least of the fixed points of R̂, i.e.

N =
⋂

{X|R̂(X) = X} ∧ R̂(N) = N

Intuition: N is the least set that is unaffected by the application of R̂.

• (As a limit of an increasing chain) Let R̂ as above, and write R̂n(X)
for the result of applying n times the function R̂ to X. That is,
R̂0(X) = X, R̂1(X) = R̂(X), R̂2(X) = R̂(R̂(X)), and so on. Then,

N =
⋃

n≥0

R̂n(∅)

Intuition: we have R̂0(∅) = ∅, R̂1(∅) = {0}, R̂2(∅) = {0, 1},. . . R̂n(∅) =
{0, 1, 2, . . . , n− 1}. The union of all these sets is clearly N.
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• (As a recursive set-theoretic equation) Let 1 denote a singleton set,
e.g. 1 = {0}). We let N to be the least solution of the equation

X ≃ 1 ⊎X

Intuition: we have N ≃ 1 ⊎ (1 ⊎ (1 ⊎ · · · , so this equation is roughly
“generating” a sequence of distinct terms, which represent the natural
numbers.

The (non-trivial) equivalence of the definitions above is a consequence
of the Knaster-Tarski theorem, which is one of the most important founda-
tional theorems in computer science. It is usually discussed when studying
the formal semantics of programming languages.

We can rephrase the “prefixed-point” definition of N as follows:

N =
⋂

{X|0 ∈ X ∧ ∀m.m ∈ X =⇒ s(m) ∈ X}

This allows us to state the usual induction principle on N:

Theorem 13 (Induction Principle). Given a predicate p on N, we have
∀n ∈ N. p(n) iff the following properties hold:

p(0)

∀m ∈ N. p(m) =⇒ p(m+ 1)

Proof. The (⇒) direction is trivial.
For the (⇐) direction, we take Y = {n ∈ N|p(n)} and show Y = N,

proving the thesis ∀n ∈ N. p(n). By definition of Y , Y ⊆ N is immediate,
so we now prove N ⊆ Y . By hypothesis, we have

0 ∈ Y
∀m ∈ N. m ∈ Y =⇒ m+ 1 ∈ Y

the above implies

Y ∈ {X|0 ∈ X ∧ ∀m.m ∈ X =⇒ s(m) ∈ X}

which together with

N =
⋂

{X|0 ∈ X ∧ ∀m.m ∈ X =⇒ s(m) ∈ X}

implies N ⊆ Y .
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Exercise 14. Prove ∀n ∈ N.0 + 1 + 2 + · · · + n = n·(n+1)
2 .

Note how the induction principle (Th.13) closely matches the inductive
inference rules.

Consider the above equation

N ≃ 1 ⊎ N

If you recall context free grammars, you will find the above recursive set
equation similar to

N ← 0 | s(N)

Indeed, grammars are a kind of inductive definitions.

Exercise 15. Starting from the grammar of binary trees (of naturals)

T ← N | b(T, T )

rewrite the above definition using inference rules. Then, further rewrite it
as a recursive set-theoretic equation. You can use N,×,⊎ for the latter.

Exercise 16. Express the set T of Ex. 15 using
⋂

:

T =
⋂

{X| · · · }

Exercise 17. (For logically minded people)
Write an induction principle for T.

Exercise 18. Define A∗, the set of finite sequences (i.e. strings) of elements
of the set A using an inductive definition.

Exercise 19. Consider the set of natural numbers A defined by the inductive
rules below.

6

n m

n+m

n m

n ·m

n m

nm+1

State an induction principle for this set, in the spirit of Th. 13. Then use
it to prove that every number in A is an even natural number.

An important set of inductive rules is the following one, which is used
in defining equivalence relations.

Definition 20. The equivalence relation inductive rules for a relation R
are the following:

x R x

x R y

y R x

x R y y R z

x R z
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1.4 Cardinality

In programming, we are used to exploit different data types such as strings,
trees, lists,. . . to represent information. Some of these data types admit only
a finite number of values (e.g. booleans only admit two: true and false),
while others do not (strings can be of any length, for instance). We now
focus on those data types which admit an infinite number of values: these are
typically defined inductively exploiting disjoint union and cartesian product.
For instance:

L ≃ 1 ⊎ (N× L) lists
T ≃ N ⊎ (T × T) binary trees

T ≃ N ⊎
(

(T× T) ⊎ (T× T× T)
)

trees with branching 2 or 3

While having several different data types is convenient in programming,
it is useful to be able to represent all of them in a common format. Indeed, it
is common for a program to serialize a value of any such data type into a file
(“save”), or to deserialize a file back to the original value (“load”). Files can
then be transmitted and duplicated without caring about the actual value
inside it, or even its data type. In a sense, they are universal information
carriers.

In computability theory, a similar technique is used to represent infor-
mation using a common format. However, instead to convert data into a
file, i.e. a byte string, it is common to convert data into a natural number.
The difference is actually minimal, since a natural number can be arbitrar-
ily large, therefore it can have an arbitrarily large number of decimal digits
(for instance), so it can represent as much information as needed. Both files
and natural numbers can be used as universal information carriers. In com-
putability theory, we tend to prefer using natural numbers since we do want
to use numbers for general programming anyway, hence using them also as
data carriers is the most economic choice: in our theory we shall never need
to consider other data types but natural numbers.

Below, we show that any data type defined in terms of disjoint union or
cartesian product (and having infinite values) can be encoded into natural
numbers in a bijective fashion. Informally, given any “common” data type,
there is a function which is able to serialize any value of that type into
a natural number, in such a way that it is possible to deserialize it back
to the original value. Further, the encoding is surjective, so that actually
any number can be deserialized into some value. Surjectivity is not strictly
needed, but it simplifies the theory, since we shall never need to consider
those cases in which the deserialization fails.
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1.4.1 Bijections from N ⊎ N,N× N,N∗, . . . to N

Disjoint Union We now construct a bijection between N⊎N and N. The
set N⊎N is intuitively composed of two parts: the “left N” and the “right N”.
We define two functions, named inL (“in-left”) and inR (“in-right”) which
map the left/right parts into the set of even and odd naturals, respectively.
Then we construct the wanted bijection encode⊎ exploiting these auxiliary
functions.Definition

inL(n) = 2n

inR(n) = 2n+ 1

encode⊎(x) =

{

inL(n) if x = 〈0, n〉
inR(n) if x = 〈1, n〉

Exercise 21. Prove that this is a bijection. (Check that it is injective and
surjective)

Exercise 22. Write the inverse function N→ N ⊎ N. See Sol. 306.

Cartesian Product We now provide a bijection (N×N)↔ N: this is the
so-called “dovetail” function.Definition

pair(〈n,m〉) =
(n+m)(n +m+ 1)

2
+ n

This can be visualized as follows:

m=0 1 2 3 4 5 6 7

n=0 0 1 3 6 10 15 21 28

1 2 4 7 11 16 22 29

2 5 8 12 17 23 30

3 9 13 18 24 . . .

4 14 19 25 . . .

5 20 26 . . .

6 27 . . .

7 . . .

Indeed, by inspecting the table above it is easy to check that

pair(〈0, x〉) =
x
∑

i=0

i =
x · (x+ 1)

2
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Also, by inspection we get

pair(〈n+ 1,m〉) = pair(〈n,m+ 1〉) + 1

Hence, in the general case

pair(〈n,m〉) = pair(〈n − 1,m+ 1〉) + 1 = pair(〈n− 2,m+ 2〉) + 2 = · · ·

= pair(〈0,m + n〉) + n = (n+m)(n+m+1)
2 + n

Exercise 23. Describe the inverse function N → N × N. This is usually
seen as two projection functions proj1 and proj2.

Exercise 24. Construct a bijection (N⊎ (N×N))↔ ((N⊎N)×N). Do not
re-invent everything from scratch, but exploit previous results instead.

Theorem 25. There a bijection between N and N+ (the set of finite non-
empty sequences of naturals).

Proof. Left as an exercise. First, provide an inductive definition for N+.
Then, define the bijection inductively.

Exercise 26. Describe how to use these encodings to construct the following
bijections:

• the language of arithmetic expressions ↔ N

• the set of all files ↔ N

• the language of logic formulas ↔ N

Exercise 27. Define a bijection between N and Q. (Hint: represent Q as
the set of fractions p/q with p, q coprime.)

Exercise 28. Prove that

A ∩B = ∅ =⇒ ∃f ∈ (A ∪B ↔ A ⊎B)

Exercise 29. Prove that pair is monotonic on both arguments, that is:

∀x, x′, y, y′. x ≤ x′ ∧ y ≤ y′ =⇒ pair(〈x, y〉) ≤ pair(〈x′, y′〉)

Lemma 30.
pair(〈n,m〉) ≥ n
pair(〈n,m〉) ≥ m

Statement
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Proof. The first part is trivial:

pair(〈n,m〉) =
(n +m)(n +m+ 1)

2
+ n ≥ n

For the second part

pair(〈n,m〉) =
(n+m)(n+m+ 1)

2
+ n ≥

(n+m)(n +m+ 1)

2
=

=
n2 +m2 + 2nm+ n+m

2
≥

m2 +m

2
≥

m+m

2
= m

where the last steps follow from m2 ≥ m, which holds for all m ∈ N.

1.5 Paradoxes and Related Techniques

This section presents one of the first computability results.
First, we will consider computer programs, as entities defining an ef-

fective (or automatic, mechanizable) procedure to process an input so to
construct, upon termination, an output. We will then restrict to the simple
case where inputs and output are just natural numbers, since any structured
data can be encoded into those. Hence, we describe the mapping between
inputs and outputs of a given program using a partial function N  N.
The partiality of this function is due to the fact that a program might loop
forever, without producing any result at all.

Then, we will show the existence of a specific total function f ∈ N→ N

which no program can compute. In other words, if we consider the set R

of the partial functions g such that there is at least one program that can
compute g, our function f does not belong to R. Again, in other words R

is a strict subset of N  N. We will see that, intuitively, f is just “too
complex” to be computed by a program. While a computer is a magnificent
device which can solve a large amount of different tasks, still its power has
some limits: tasks so complex that no computer can possibly solve do exist.

In order to construct this “impossible-to-compute” function f we need
to borrow a clever proof technique from logic: the diagonalisation technique.

1.5.1 Russell’s Paradox

Here’s a famous version of this paradox:

There is a (male) barber b in a City who is shaving each (and
only) man in the City who is not shaving himself.
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Apparently, one might think that this is a possible scenario. In formulas,
we could write:

∀m ∈ City.
(

b shaves m ⇐⇒ ¬(m shaves m)
)

But if this were true for all men m, we could take m = b and have

b shaves b ⇐⇒ ¬(b shaves b)

which is clearly false. That is, we are unable to answer “does the barber
shave himself?”.

Russell used a similar argument to find a contradiction to näıve set
theory. Assume there is a set X = {x|p(x)} for each predicate p we can
think of. We clearly must have

∀y.
(

y ∈ X ⇐⇒ p(y)
)

How can we make this resemble the paradox seen before? We want X to
play the rôle of the barber. So, y must play the man m, and shaves relation
must be ∈ (the membership relation). Then p(y) becomes y 6∈ y. So, the
above becomes

∀y.
(

y ∈ {x|x 6∈ x} ⇐⇒ (y 6∈ y)
)

which is indeed a contradiction, since if X = {x|x 6∈ x}, we now have
(choosing y = X, as we did before for m = b)

X ∈ X ⇐⇒ X 6∈ X

Russell used this argument to show that the set X above actually must
regarded as non well-defined, so to avoid the logical fallacy. The same
argument however can be used to prove a number of interesting facts.

1.5.2 Diagonalisation

Theorem 31 (Cantor). There is no bijection between a set A and its parts
P(A). Proof

Proof. By contradiction, assume f ∈ (A ↔ P(A)). We now proceed as for
Russell’s paradox. Let

X = {x ∈ A|x 6∈ f(x)}

Clearly, X ∈ P(A), so f−1(X) ∈ A. We now have,

f−1(X) ∈ X ⇐⇒ f−1(X) 6∈ f(f−1(X)) ⇐⇒ f−1(X) 6∈ X

which is a contradiction.
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This kind of argument is also known as a diagonalisation argument. This
is because the set X is constructed by looking at the diagonal of this matrix:

x y z . . . (all the elements of A)

f(x) yes no no . . .

f(y) no no no . . .
f(z) no yes yes . . .
...

...
...

...
. . .

Given a ∈ A, the matrix above has a “yes” at coordinates f(a), a iff xj
belongs to Xi (and a “no” otherwise). How do we build a set X different
from all the f(a)’s ? We take the diagonal (yes, no, yes, . . .) and complement
it: (no, yes, no, . . .)

x y z . . . (all the elements of A)

X no yes no . . .

So, X is clearly distinct from all the f(a).

Exercise 32. Construct a bijection from R to the interval [0, 1).
(Hint: start from arctan(x))

Theorem 33. There is no bijection between N and R.

Proof. By contradiction, there is a bijection f between N and [0, 1). Every
real x ∈ [0, 1) can be written in a unique way as an infinite sequence of
decimal digits

x = 0. d0d1d2 . . .

with 0 ≤ di ≤ 9, and such that digits 0, . . . , 8 occur infinitely often (no
periodic 9’s). In other words, there is a bijection between [0, 1) and such
infinite sequences.

So, for all n ∈ N , we can write f(n) = 0.dn,0dn,1 . . ., hence we have a
bijection between N and these infinite sequences.

We proceed by Russell’s argument (diagonalisation). We construct a
sequence different from all the ones generated by f(n) for all n ∈ N. We let

di =

{

1 if di,i = 0
0 otherwise

Note that this is indeed a legal sequence (each digit in the 0 . . . 9 range, no
periodic 9’s). Hence, there is no n such that f(n) = 0. d0d1d2 . . ., contra-
dicting f being a bijection.
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Another example of the same technique:

Theorem 34. There is no bijection f between N and (N→ N).

Proof. By contradiction, take f . Define g(n) = f(n)(n) + 1. Since f is
a bijection, and g a function in its range, for some i ∈ N we must have
g = f(i). But then f(i)(i) = g(i) = f(i)(i) + 1.

Actually, the above proof proved a slightly more general fact: we can
extend the theorem to a surjective f . Also, we can use partial functions as
ran(f), exploiting (N→ N) ⊆ (N N).

Theorem 35. There is no surjective function between N and (N N).

Proof. Left as an exercise. Hint: prove the following

∅ 6= B ⊆ B′ ∧ ∃f ∈ (A→ B′). f surjective
=⇒ ∃g ∈ (A→ B). g surjective

1.6 A Cardinality Argument for Non Computabil-
ity

We can now state a first, strong, computability negative result.
Namely, we compare the set of functions (N → N) with the set of pro-

grams in an unspecified language. We merely assume the following very
reasonable assumptions:

• each program can be written in a file — i.e. it can be represented by
a (possibly very long, but finite) string

• each program has an associated semantic partial function, mapping
the input (a file) to the output (another file)

Theorem 36. There is a function (from input to output) that can not be
computed by a program.

Proof. There is a bijection between files and N (Ex. 26). So a program
source file just corresponds to a natural in N, while the function mapping
input to output can be seen as some partial function in (N N). Since the
mapping from programs to their semantics is in (N→ (N N)), by Th .35
it can not be surjective.
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Note that the proof above actually hints to one of these incomputable
functions. Let us forget files, and just assume that programs get some
natural as input and can output a natural as output. Similarly, we can
identify programs with naturals as well, i.e. we fix some enumeration and
use Pn to denote the n-th program. So, we can write ϕx(y) for the output of
the x-th program (Px) when run using y as input. Then, the proof suggests
this function:

f(i) = ϕi(i) + 1

However, we should be careful here: the function ϕi is a partial function,
and therefore ϕi(i) might be undefined. So, we change the above definition
of f to:

f(i) =

{

ϕi(i) + 1 if ϕi(i) is defined
0 otherwise

And this indeed is not a computable function.

Theorem 37. The total function f defined above is not computable.Proof

Proof. First, note that f(i) is defined for all i, so f is indeed a total function.
By contradiction, assume that f is computable by some program P .

Since programs can be enumerated, we have P = Px for some natural index
x. The fact that Px computes f can be written as ∀i. ϕx(i) = f(i). Since
this holds for all i, we can pick i = x and have f(x) = ϕx(x). Since f is
total ϕx(x) must be defined. From this last statement, by expanding the
definition of f we get ϕx(x) = f(x) = ϕx(x)+1. This is a contradiction.

Exercise 38. What happens if we change the 0 in the definition of f to
some other natural? Does the incomputability argument still hold? What if
we change it to “undefined”, thus defining f to be a partial function?

1.7 Summary

The most important facts in this section:

• näıve set theory ; logical formulas

• encoding and decoding functions for N2,N ⊎ N, as well as the usual
data types

• diagonalization method for constructing a non-computable function



Chapter 2

The λ Calculus

Why the λ-calculus in a computability course?

The usual way to introduce students to computability theory is to work in
a rather abstract setting, and reason about what can (and can not) computed
by programs by making as less assumptions as possible about what programs
are, in which programming language they are written (if any at all), and how
they are executed. Being, in a sense, “language-agnostic” is one of the main
strengths of computability theory, since it allows one to achieve very general
results.

On the other hand, coping with this high level of abstraction might be
difficult for students, at least at the beginning. More precisely, it can be
hard to keep track of the connections between the abstract theory (func-
tions, indexes, enumerations) and the more concrete world of computer sci-
ence (programming languages, interpreters, semantics). In order to bridge
the gap, it is possible to first present computability results on a specific
programming language, and then abstract from that choice later on, when
(hopefully) a strong intuition about the meaning of such results has been
developed.

Another point in favour of starting our investigation using a specific
programming language is the following. Some results in computability are
“positive”, in the sense that they state that some function can indeed be
computed by a program. Proving this in an abstract setting, where no
convenient programming language can be used, can be a daunting task.
Often, a full proof would be rather long, full of technicalities, tedious, and
not very useful to students as there is no deep insight to be gained from such
a proof. Indeed, it is common practice to omit these proofs, and refer to
some informal principle such as Church’s Thesis to support the statement.

19
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Instead, when a programming language is used, these proofs amount to
solving specific programming exercises, which is a task worth doing in a
Computer Science course.

So, why using the (untyped) λ calculus and not another programming
language (say, Java)? The λ calculus has some specific features which, at
least in my opinion, make it a very good choice for studying computability.

• The syntax of the λ calculus is extremely small. This greatly helps
when defining procedures which manipulate program code, since we
have a very small number of cases to consider, only. By comparison,
the full Java syntax is huge.

• The full semantics of the λ calculus fits a single page, even when includ-
ing all the auxiliary definitions. This helps in constructing interpreters
(or compilers). Building a full Java interpreter is much more complex.

• The λ calculus is reasonably expressive. Despite being minimalistic,
all the common building blocks of programs can be defined. This
includes data types (e.g. booleans, naturals), usual operations (e.g.
multiplication, testing for ≤), data structures (e.g. lists, trees), control
structures (if-then-else, loops, recursion).

• Some classic computability results have a remarkably simple and ele-
gant proof when using the λ calculus.

To be fair, there are some drawbacks as well. For instance, we will omit
the proofs of some fundamental facts such as the Normalization theorem and
the Church-Rosser theorem, since these are not short enough to be included
in a computability course without sacrificing too much time. Further, as we
will see, some technical infelicities arise from subtle differences among “not
having a numeral normal form”, “not having a normal form”, and “being
unsolvable”.

In this chapter, we will provide a short introduction to the untyped λ
calculus. For the full gory details, see the introduction of [Barendregt].

2.1 Syntax

Definition 39 (λ-terms). Let Var = {x0, x1, . . .} be a denumerable set of
variables. The syntax of the λ-terms isDefinition

M ::= x variable (with x ∈ Var)
| (M M) application
| λx.M abstraction (with x ∈ Var)
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The set of all λ-terms is written as Λ.

Intuition. Roughly speaking, the λ-abstraction λx. N represents the func-
tion which takes input x and returns N . The subterm N can depend on x.
For instance, instead of writing

∀x. M(x) = x2 + 5

we shall write
M = λx. x2 + 5

Application of a λ-abstraction then behaves as follows:

(M 3) = ((λx. x2 + 5) 3) = 32 + 5 = 14

This will be made precise in the following sections, when we shall define the
α, β, η semantic rules.

Note. While we shall often use an extended syntax in our examples,
involving arithmetic operators, naturals, and so on, we do this to guide
intuition, only. In the λ calculus there is no other syntax other than that
shown in Def. 39. Later, we shall see how we can express things like 5 and
x2 in the calculus.

Exercise 40. Rewrite the definition of Λ, providing a recursive equation of
the form Λ ≃ · · · . Use only the following constructs: Var,×,⊎.

Notation: chains of left applications. As a notational convention, we
write chains of applications associated to the left such as

(((x y) z) w)

in the more compact form
x y z w

Warning. Note that applications such as (x(y(zw))) still need all the paren-
theses, otherwise we have (x(y(zw))) = xyzw = (((xy)z)w). These, in
general, are not equal, as we shall prove later.

λ-structural rules. An often-used set of inductive rules are the structural
rules. They are used to allow a relation R between λ-terms to be applied to
any subterm.

Definition 41. The λ-structural inductive rules for a relation R between
λ-terms are the following:

M R N

(MO) R (NO)

M R N

(OM) R (ON)

M R N

(λx.M) R (λx.N)
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2.2 Curry’s Isomorphism

How to express functions with more than one parameter in the λ-calculus?
The answer is suggested by the following result.

Lemma 42. Let A,B,C be sets. Then, there exists a bijection

[

(A×B)→ C
]

↔
[

A→ (B → C)
]

Proof. We build such a bijection h by mapping function f ∈
[

(A×B)→ C
]

to the function h(f) ∈
[

A→ (B → C)
]

defined as:

h(f) = gf ∈
[

A→ (B → C)
]

where

gf (a) = gf,a ∈ (B → C)
gf,a(b) = f(a, b) ∈ C

Checking that h is indeed a bijection is left as an exercise.

To represent binary functions using only unary functions, we proceed
as follows. Instead of taking two arguments x, y and return the result, we
instead take only x, and return a function. This function will take y, and
return the actual result.

λx. (λy. x2 + y)

For example:

(((λx. (λy. x2 + y)) 2) 5) = ((λy. 22 + y) 5) = 22 + 5

Note that this way of expressing binary functions also allows partial appli-
cation: we can just apply the first argument x, only, and use the resulting
function as we want. For instance, we could use the resulting function on
several different y’s.

Notation: chains of abstractions. Repeated abstractions such as

λx. λy. λz.M

are also written in the compact form

λxyz.M
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2.3 α-conversion, Free Variables, and Substitution

In computer programs, the name of variables is immaterial. Variables can
be arbitrarily renamed without affecting the run-time behaviour of the pro-
gram. It is important, though, that all the occurrences of the same variable
are renamed consistently. This includes both variable declaration and use,
as we can see below.

λx. x2 + 5 = λy. y2 + 5

Above the “λx” declares, or binds, the variable x which is then used in the
expression x2 + 5. If we want to rename x to y, we can intuitively do that
without affecting the meaning of the expression, as long as we rename all
the occurences of x.

The renaming of program variables is known as α-conversion, and is
written as =α.

λx. x2 + 5 =α λy. y2 + 5

In order to precisely define the rules for α-conversion, we start with
identifying those variables which can not be renamed. For instance, we can
not rename those variables for which there is no declaration, i.e. no enclosing
λ in the λ-term at hand. For example, consider the following:

λx. x+ z

Here, we can rename x, but we can not rename z, since there is no λz
around. Such a variable is said to be free.

Definition 43. The free variables free(M) of a λ-term are those not under
a λ-binder. Formally, they are inductively defined as follows:

free(xi) = {xi}
free(NO) = free(N) ∪ free(O)
free(λxi.N) = free(N) \ {xi}

Terms having no free variables are said to be closed. The set of closed λ-
terms is denoted with Λ0 = {M | free(M) = ∅}. Definition

Exercise 44. Prove that for all λ-terms M , the set free(M) is finite.

Let us consider the λ-term λx. M . Roughly, in order to α-convert a
variable x into y we have to perform two steps: 1) change λx into λy; 2)
substitute every x in M into y. Formally, the substitution in step 2 is
denoted with M{y/x}.
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Note that formally defining the result of the substitution is not as trivial
as it might seem. For instance, consider the following:

λx. λy. x+ y

Renaming the x in the body of the λx is done by

(λy. x+ y){y/x}

A wrong result for this would be λy. y+y. This is wrong because otherwise
we would have the following α-conversion:

λx. λy. x+ y =α λy. λy. y + y wrong

In the right hand side there is no information about which declaration (λy)
is related to each use of y in y+y. The meaning of the original expression is
lost. Causing this kind of confusion must therefore be forbidden. If we really
want to rename x to y, we also need to rename the “other” y to something
different beforehand, e.g. as follows:

λx. λy. x+ y =α λy. λz. y + z

In order to do that, we should define substitution such that e.g.

(λy. x+ y){y/x} = (λz. y + z)

This is done as follows. Below we generalize the variable-variable substi-
tution M{y/x} to the more general variable-term substitution M{N/x},
allowing x to be replaced with an arbitrary term N , rather than just a
variable y.

Definition 45. The result of applying a substitution M{N/x} is defined as
follows.

xi{N/xi} = N
xi{N/xj} = xi when i 6= j
(MO){N/xi} = (M{N/xi})(O{N/xi})
(λxi.M){N/xi} = (λxi.M)
(λxj.M){N/xi} = λxk. (M{xk/xj}{N/xi}) when i 6= j

where k = min{k | xk 6∈ free(N) ∪ free(λxj .M)}

Definition
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In the last line we avoid variable clashes. First, we rename xj to xk, a
“fresh” variable, picked1 so that it does not occur (free) in N and λxj .M .
Then, we can apply the substitution in the body of the function.

Note: as a consequence of having (λxi.M){N/xi} = (λxi.M) we get

λx. λx. x+ x =α λy. λx. x+ x

This means that, whenever the same variable x appears in two nested decla-
rations, the inner one “shadows” the outer one. That is, the x occurring in
x+x is the one declared by the inner λ-binder. This follows the same static
scoping conventions found in programming languages: each occurrence of a
variable is bound by the innermost definition.

We can finally formally define our =α relation.

Definition 46 (α-conversion). The (equivalence) relation =α between λ-
terms is inductively defined by the following inductive rules:

• equivalence relation rules for =α (see Def. 20)
• λ-structural rules for =α (see Def. 41)
• rule α
λx. M =α λy. M{y/x} when y 6∈ free(M)

Definition

For more details, see [Barendregt 2.1.11].
Following [Barendregt], unless otherwise stated, we will often consider

λ-terms up to =α; i.e. we will consider α-congruent terms as identical. To
stress this fact we will include the following inference rule in our inductive
definitions.

Definition 47 (Up-to-α rule). The “up-to-α” inference rule for a relation
R between λ-terms is the following.

M =α M ′ M ′ RN ′ N ′ =α N

M RN

2.4 β and η Rules

Definition 48 (β rule). Here’s the β rule, used to compute the result of
function application.

(λx.M)N →t
β M{N/x}

(Note: the t stands for “at the top-level”) Definition

1 We pick the variable xk having minimum index k. This peculiar choice is actually
irrelevant. Picking any other “fresh” variable would lead to exactly the same α-conversion
relation.
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Example:
(λx.x2 + x+ 1)5→t

β 52 + 5 + 1

The meaning is straightforward: we can apply a function (λx.M) by taking
its body (M) and replacing x with the actual argument (N).

Definition 49 (η rule). Here’s the η rule, used to remove redundant λ’s.Definition

(λx.Mx)→t
η M if x 6∈ free(M)

When x is not free in M , it is obvious that (λx.Mx) denotes the same
function as M : it just forwards its argument x to M .

Exercise 50. Can you state the η rule in Java (or another procedural lan-
guage), at least in some loose form?

Relations →t
β and →t

η can be extended so that β and η rules can be
applied to subterms as well, i.e. not only at the top level.

Definition 51. Given a reduction relation →t
R (e.g. with R = β or R = η),

we define the relation →R on λ-terms as per the inductive rules below.Definition

• λ-structural rules for →R (see Def. 41)
• up-to-α rule for →R (see Def. 47)
• top-level rule R
M →R N when M →t

R N

Example 52. Here’s an example which shows that in some cases it is
mandatory to α-convert λ-bound variables.

(λx. ((λy.(λx. y x)) (x x)))
→β (λx. (λx. y x){(x x)/y})
= (λx. (λx̂. x x x̂))

In the last line, the inner λx must be renamed, since x ∈ free(x x). Forget-
ting to rename x leads to the wrong result (λx. (λx. x x x)), in which all
the x’s are bound by the inner λx, i.e. the wrong result can be α-converted
to (λy. (λx. x x x)), which is completely different from the correct result.

Suggestion. Since the definition of →β includes the “up-to-α” rule, we
are allowed to rename variables before applying β. A simple thumb rule to
avoid mistakes such as the above one is

always keep λ-bound variables distinct:
immediately rename multiple occurrences of λx
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In the example above, the rule suggest to immediately perform this renaming:

(λx. ((λy.(λx. y x)) (x x))) =α (λx. ((λy.(λx̂. y x̂)) (x x)))

We can now apply β in a safe way without caring about needed α-conversions:
since we renamed everything earlier, no further α-conversion is needed.
This thumb rule can cause you to perform more α-conversions than strictly
needed, but will never lead you to a wrong result.

Unlike →t
R, the above relations are non-deterministic, i.e. they can lead

to different residual λ-terms.

Exercise 53. Prove that the relations →R, R ∈ {β, η} above are non-
deterministic, i.e.

M →R M1 ∧M →R M2 ∧M1 6= M2

for some M,M1,M2.

Sometimes a single →t
βη or →βη relation is used to denote either the β

or η reduction relation.

Definition 54. We let Definition

M →t
βη N iff M →t

β N or M →t
η N

M →βη N iff M →β N or M →η N

A λ-term that can not be further reduced is said to be in normal form.

Definition 55 (Normal form). Given a reduction relation →R (e.g. with
R = β, R = η, or R = βη), we say that a term M is in R-normal form iff
M 6→R. Definition

2.4.1 β Normal Forms

We now consider the repeated application of →β starting from a given λ-
term M . This constructs a sequence such as the following one:

Definition 56. A β-reduction2 for M is a finite or infinite sequence of
terms Mi such that:

M →β M1 →β M2 →β M3 · · ·

2We follow the terminology of [Barendregt] here. Reductions as the above are also
called runs, or traces for M .
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Intuitively, this corresponds to “executing” program M : at each step
the expression at hand is rewritten in an equivalent form (according to β).
Exactly one of the following must hold:

• The β-reduction stops: that is, we reach some Mk which is a β-normal
form. Intuitively, this is the result of running M . We say that the
β-reduction above halts.

• The β-reduction never stops: that is, it is infinite. So, the β-reduction
is non-halting.

When a normal form is reached, we regard that λ-term as the result (the
“output”) of the β-reduction. If instead it does not exist, we regard the
β-reduction as a non-terminating one (is “divergent”).

Recall that the relation →β is non-deterministic. So, a term might have
multiple different β-reductions.

Exercise 57. Construct different β-reductions for

(λx. x)((λy.y)5)

As far as we know, a term M could have different β-reductions leading
to different β-normal forms.

Definition 58. We say that N is a β-normal form of M if and only if M
has some β-reduction ending with N , and N is a β normal form.

Here’s an example of a term having no β-normal form.

Exercise 59. Show that Ω = (λx. xx)(λx. xx) has no halting β-reduction,
hence no β normal form.Definition

Here’s an example of a term having no β-normal form and having a
β-reduction made of distinct terms.

Exercise 60. Check the above on Ω3 = (λx. xxx)(λx. xxx).

Here’s an example of a term having one β-normal form.

Exercise 61. Show that λx. x has exactly one β normal form. (Yes, it is
trivial.)

Here’s an example of a term having exactly one β-normal form, despite
having infinitely many halting reductions, and infinitely many non-halting
reductions.
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Exercise 62. Prove the above using (λx.5)(Ω3Ω3).

Now, a question arises. Can a λ-term have more than one β-normal
form? The following result states that, while there might be multiple dif-
ferent β-reductions, any term M has at most one β-normal form (up to
α-conversion3). Alas, we omit the proof.

Definition 63. A relation →R is a Church-Rosser relation iff ∀M,N1, N2

M →∗
R N1 ∧M →∗

R N2 =⇒ ∃N.N1 →
∗
R N ∧N2 →

∗
R N

Theorem 64 (Church-Rosser). The relation →β is a Church-Rosser rela-
tion. As a consequence, each λ-term has at most one β-normal form (up-to
α-conversion).

[Barendregt 3.2.8 — no proof].
Now we know that a given M has either zero or one β-normal forms.

So, we are now entitled to say “the β-normal form” instead of “a β-normal
form”.

So, how can we compute the β-normal form of a term M (assuming
there is one)? Fortunately, we do not need to search among all possible
β-reductions of M (which may be infinite): by the following result, it is
enough to check just one specific β-reduction.

Definition 65 (Leftmost-outermost reduction relation). The leftmost-outermost
β-reduction relation is →β constrained as follows: it must be applied as to
the left as possible, i.e. to the first occurrence of an applied λ binder, reading
the λ-term left-to-right. Below we show a procedure to compute the leftmost-
outermost residual.

procedure L(M)
Input: a λ-term M
Output: either a leftmost-outermost residual of M ,

or the special constant NormalForm if no residual exists
if M = xi then return NormalForm

else if M = λxi.N then
if L(N) 6= NormalForm then return λxi. L(N)
else return NormalForm

else if M = NO then
if N = λxi.P then return P{O/xi}
else if L(N) 6= NormalForm then return (L(N))O
else if L(O) 6= NormalForm then return N(L(O))
else return NormalForm

3 That is, if N1 and N2 are two β-normal forms for M , then N1 =α N2.
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Exercise 66. Prove that the above procedure indeed applies β in a leftmost-
outermost way. Proceed by induction on the structure of M .

By the following theorem, to find a normal form we just need to apply
L repeatedly. Alas, we omit the proof.

Theorem 67 (Normalization). The leftmost-outermost strategy (i.e. repeat-
edly applying procedure L above) is normalizing, i.e. it finds the β-normal
form as long as it exists.Statement

Nota Bene: when no β-normal form exists, this strategy constructs to
an infinite β-reduction, so it never halts.

[Barendregt 13.2.2 — no proof]

The fact that the normalizing procedure above may fail to halt (as it
does when M has no normal forms) is no coincidence. Indeed, we will use
results from computability theory to explain that there is actually no way
we can improve the above procedure by very much. More concretely, we will
later on prove that each algorithm to find the β-normal form4 of a term M
must fail to halt for some M . In other words, “fixing” the normalization
procedure to print the message “there is no normal form” when that is the
case is simply impossible.

2.4.2 η Normal Forms

While finding β-normal forms can be a hard task, η-normal forms are almost
trivial. This is because η-normal forms always exist, unlike for β.

A η-reduction is defined as for β-reduction, mutatis mutandis. Similarly
for the notion of “N is a η-normal form of M”, etc.

Exercise 68. Define a function size(M) which counts the number of syn-
tactic elements (abstractions, applications, variables) in M .

Then, prove that if M →η N then size(M) > size(N).

Finally use the above result to prove that no λ-term has an infinite η-
reduction.

Exercise 69. Prove that →η is Church-Rosser.

Theorem 70 (Existence and uniqueness of η-normal form). Each given M
admits exactly one η-normal form.

Proof. The above exercises imply the statement.

4When it exists.
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Exercise 71. Let M be a β-normal form, and M →η N . Prove that N is
still a β-normal form.

Exercise 72 (Commuting η and β). (Hard) Prove the following property.
If M →∗

η N →∗
β O, then M →∗

β N ′ →∗
η O for some N ′.

See Sol. 307 for some hints.

Theorem 73. M has a β-normal form if and only if M has a βη-normal
form.

Proof. (⇒) Immediate from Ex.71 and Th. 70 (exercise)
(⇐) Assume M →∗

βη N with N βη-normal form. This means that there
is a reduction

M →γ1 · · · →γn N

with γi ∈ {β, η}. By repeated application of Ex. 72 we get that there is also
a reduction

M →∗
β N ′ →∗

η N

for some N ′ in β-normal form. This concludes.

The previous results allow us to state the following.

Theorem 74 (Normalization for →βη). To find the βη-normal form for M
(when existing), it is enough to apply the normalizing leftmost-outermost
strategy, take its output (a β-normal form of M), and apply →η as far as
possible.

Proof. Direct from the lemmata above.

2.4.3 Equational Theory

The relation →βη describes how to “compute” with the λ-calculus. We now
exploit this relation to define an equivalence between λ-terms.

Definition 75 (Axiomatic semantics for the untyped λ-calculus). The equiv-
alence relation =βη between λ-terms is inductively defined below. Definition

• equivalence relation rules for =βη (see Def. 20)
• rule βη
M =βη N when M →βη N

We also write =β (respectively, =η) for the equivalence relations defined by
using →β (resp. →η) instead of →βη.

Convention: when unambiguous we shall often write M = N instead of
M =βη N .
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Note that using the structural rules one can apply the β and η rules even
to subterms of the λ-term at hand, e.g.

λx. ((λy. y)a) =βη λx. a

Indeed, the following holds.

Exercise 76. Prove that =βη is closed under the λ-structural rules of Def. 41.

Exercise 77. Use the η rule to prove the ext rule.

Mx =βη Nx ∧ x 6∈ free(MN ) =⇒ M =βη N (ext)

Exercise 78. Show that the η rule is actually equivalent to the ext rule
above.

This also provides a nice link between the equational theory and the
βη-reduction relation:

Theorem 79. If M =βη N and N is a βη-normal form, then M →∗
βη N .Statement

Proof. Left as an exercise. Suggestion: prove the following stronger state-
ment, instead.

• If M =βη O both the following properties hold:

– if O →∗
βη N and N is a βη-normal form, then M →∗

βη N

– if M →∗
βη N and N is a βη-normal form, then O →∗

βη N

Proceed by induction on =βη. You might want to exploit the Church-Rosser
property in some case.

See also [Barendregt 3.2.9] for a proof.

Figure 2.1 provides a summary of the syntax and semantics of the λ-
calculus.

2.5 Some Useful Combinators

Below, we list several common λ-terms.Definition



2.5. SOME USEFUL COMBINATORS 33

λ-terms (M , Λ)

M ::= xi | (M M) | (λxi. M)
Λ = {M |M is a λ-term }

free variables (free(M),Λ0)

free(xi) = {xi}
free(NO) = free(N) ∪ free(O)
free(λxi.N) = free(N) \ {xi}

Λ0 = {M | free(M) = ∅}

equivalence relation rules for R

x R x

x R y

y R x

x R y y R z

x R z

λ-structural rules for R

M R N

(MO) R (NO)

M R N

(OM) R (ON)

M R N

(λx.M) R (λx.N)

substitution (M{N/x})
xi{N/xi} = N
xi{N/xj} = xi if i 6= j
(MO){N/xi} = (M{N/xi})(O{N/xi})
(λxi.M){N/xi} = (λxi.M)
(λxj .M){N/xi} = λxk. (M{xk/xj}{N/xi}) if i 6= j
where k = min{k | xk 6∈ free(N) ∪ free(λxj .M)}

α conversion (=α)

• equivalence relation rules for =α

• λ-structural rules for =α

• λx. M =α λy. (M{y/x}) if y 6∈ free(M)

up-to-α rule for R

M =α M ′ M ′ RN ′ N ′ =α N

M RN

β reduction relation (→t
β,→β)

• (λx.M)N →t
β M{N/x}

• λ-structural rules for →β

• up-to-α rule for →β

• top-level rule
M →t

β N

M →β N

η reduction relation (→t
η,→η)

• (λx.M x)→t
η M if x 6∈ free(M)

• λ-structural rules for →η

• up-to-α rule for →η

• top-level rule
M →t

η N

M →η N

βη reduction relation (→t
βη,→βη)

M →t
βη N iff M →t

β N or M →t
η N

M →βη N iff M →β N or M →η N

βη equivalence (=βη)

• equivalence relation rules for =βη

•
M →βη N

M =βη N

Figure 2.1: The syntax and semantics of the untyped λ-calculus
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I = λx. x

K = λxy. x

S = λxyz. xz(yz)

T = λxy. x = K

F = λxy. y

The λ-term I represents the identity function. The λ-term K is used to
build constant functions: e.g. K 5 is a function which always returns 5,
since K 5 x =βη 5 for all x.

Example 80. We have the following:

KISS =βη ((KI)S)S =βη IS =βη S

Another example:

SKKx =βη Kx(Kx) =βη x =βη Ix

so, by the ext rule

SKK =βη I

Another example:

KIxy =βη Iy =βη y =βη Fxy

so, by the ext rule

KIx =βη Fx

again, by the ext rule

KI =βη F

Exercise 81. Prove that we do not have T =βη F. See Sol. 308.

Lemma 82. Application is not associative, that is

¬∀MNO. (MN)O =βη M(NO)
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Proof. By contradiction,

(K(IT))F =βη IT =βη T

((KI)T)F =βη IF =βη F

General Hint. To prove that some equation does not hold in general
under βη, you can show it implies T = F. To this aim, it is useful to consider
simple combinators such as K, I first. Also, applying everything to a generic
term (to be chosen later) usually helps: for instance, you can proceed like
this in the lemma above. First, guess M = K. So, KNO =βη K(NO).
Now, the K on the right hand side expects two arguments, and has only
one, so we provide it as a generic term P , which we can choose later. We
obtain KNOP =βη K(NO)P , implying NP =βη NO. Now it is easy to
guess N = I, so to obtain P =βη O. Guessing P,O is then made trivial.

Exercise 83. Show that, in general, these laws do not hold

MN =βη NM

M(NO) =βη O(MN)

M(MO) =βη MO

MO =βη MOO

MM =βη M

MN =βη λx.M(Nx)

Exercise 84. Check whether these terms have a β-normal form

KIK

KKI

K(K(KI))

SII

SII(SII)

KIΩ

(λz. (λx. xxz)(λx. xxz))

Exercise 85. Check that the following composition operator is associative:

◦ = λfgx. f(gx)
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2.6 Programming in the λ-calculus

In this section we argue that we can indeed “program” in the λ-calculus.
That is, that inside the λ-calculus it is possible to represent data, and it is
possible to manipulate them through algorithms.

We start by representing booleans, and providing “programs” which per-
form the usual logical operations (and, or, not). We also show how to write
an “if-then-else”.

We proceed to represent pairs of arbitrary values 〈x, y〉. We provide a
pair constructor (given x and y, build 〈x, y〉), as well as projections (e.g.,
given 〈x, y〉, extract x from it).

We then represent natural numbers, and implement all the common arith-
metic operators (+, ∗, . . .), as well as the logical comparisons (≤, 6=, . . .). We
show how to perform a kind of “FOR loop”, i.e. how to repeat the same
operation a given number n of times.

Finally, we present a fundamental technique to define functions in a
recursive way. This is very important, since e.g. it allows our programs to
simulate “WHILE loops”, i.e. to loop until an exit condition is met.

2.6.1 Representing Booleans

We pick two specific λ-terms to represent the constants “true” and “false”
in the λ-calculus. These are the λ-terms T and F we introduced earlier.Definition

T = λxy. x

F = λxy. y

If we define “if-then-else” as a simple application

if M then N else O = MNO

we have that the above indeed respects the usual behaviour of if-then-else,
i.e. the laws below:

if T then N else O =βη N
if F then N else O =βη O

Exercise 86. Check the claim above.

Exploiting the above if-then-else it is then possible to derive all the
standard logical operators.

Exercise 87. Define the logical operators And, Or, Not. (See Sol. 309)
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2.6.2 Representing Pairs

When programming, it is sometimes convenient to use pairs of values to
represent data. To this aim, we need to be able to construct a pair given
its two components, and then to project the first/second component out of
a pair. The specification of these operations is then the following:

Fst(ConsM N) =βη M Snd(ConsM N) =βη N

A possible implementation of these operations is then: Definition

Cons = λxyc. cxy

Fst = λx. xT

Snd = λx. xF

Statement
Exercise 88. Prove that the above implementation satisfies the pair laws
given in the specification.

Exercise 89. Define F1, F2 so that:

• F1(Cons x y) = Consx (Cons y x)

• F2(Cons x (Cons y z)) = Cons z (Cons x y)

2.6.3 Representing Natural Numbers: Church’s Numerals

The λ calculus does not have any numbers in its syntax. In spite of this, it is
possible to encode naturals into λ-terms, and compute with them. That is,
we shall pick an infinite sequence of (closed) λ-terms, and use them to denote
naturals in the λ calculus. We shall name these λ-terms the numerals.

There are several ways to encode naturals; we shall use a simple way
found by Church. Recall the structure of naturals, seen as terms in first-
order logic:

z, s(z), s(s(z)), s(s(s(z))), . . .

where z is a constant representing zero, and s is the successor function. We
just convert that notation to the λ calculus by abstracting over s and z:

λsz. z, λsz. sz, λsz. s(sz), λsz. s(s(sz)), . . .

We shall write the above sequence as pp0qq,pp1qq,pp2qq, and so on.
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Definition 90. The sequence of Church numerals is inductively defined as
follows. Let s and z be variables5. Definition

M0 = z

Mn+1 = sMn

ppnqq = λsz.Mn

Zero, Successor We can define a “zero” and “successor” λ-terms as fol-
lows

0 = λsz. z

Succ = λnsz. s(n s z)

The above definitions indeed satisfy the following.

0 =βη pp0qq

Succppnqq =βη ppn+ 1qq

Test against zero An operator for testing a numeral against zero should
satisfy the following:

IsZeropp0qq =βη T

IsZeroppn + 1qq =βη F

A possible implementation is:

IsZero = λn. n(KF)T

Exercise 91. Check that the above implementation is indeed correct.

Predecessor We want to define a predecessor function with the following
properties:

Pred pp0qq =βη pp0qq

Pred ppn + 1qq =βη ppnqq

Note that we let, roughly speaking, 0 − 1 = 0 above, since we do not
have negative numbers in our numerals. A possible implementation of the
above specification is as follows:

Pred = λn.Snd(nG (ConsF pp0qq))

G = λp.ConsT(Fst p (Succ(Snd p)) (Snd p))

5E.g. let us pick s = x0 and z = x1.
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Exercise 92. Check that Pred is correct.

Hint: the above λ-term repeatedly applies a function g, defined as follows:

g(〈b, x〉) =

{

〈true, x+ 1〉 if b = true

〈true, x〉 if b = false

The correctness then comes from g(g(· · · g(〈false, 0〉))) = 〈b′, n− 1〉, where
b′ is some boolean value.

Arithmetic Operators Addition can be implemented following this idea:

ppn+mqq =βη Succ(Succ(· · · (Succppmqq)))

where Succ is applied n times. The above suggests the following program:

Add = λnm.nSuccm

Exercise 93. Prove that the above is correct.

Subtraction is done similarly:

Sub = λnm.mPredn

Note however that since Predpp0qq =βη pp0qq, we have Subppnqqppmqq =βη pp0qq
if and only if n ≤ m.

Exercise 94. Prove that the above is correct.

Similarly, for multiplication we have:

ppn ·mqq =βη Addppmqq(Addppmqq(· · · (Addppmqqpp0qq)))

where Addppmqq is applied n times. Hence,

Mul = λnm.n (Addm) pp0qq

Exercise 95. Prove that the above is correct.

Exercise 96. (Tricky) Define a λ-term to implement division. (See Sol. 309).
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Logical Comparisons Above, we anticipated that the test for “less-than-
or-equal” can be performed exploiting Sub.

Leq = λnm. IsZero(Subnm)

Exercise 97. Prove that the above is correct.

The test for equality is then easy to derive.

Exercise 98. Define the equality test Eq. (See Sol. 309).

Exercise 99. Prove that n = m if and only if ppnqq =βη ppmqq.

2.6.4 Defining Functions Recursively through Fixed Points

Can we build recursive functions? For instance, consider the factorial func-
tion below. (To improve readability, here we use a liberal syntax for arith-
metics, instead of the actual λ-terms we saw in then previous sections.)

F = λn.if n = 0 then 1 else n · (F (n− 1)) (2.1)

Is there some λ-term F that satisfies the equation above (at least when
using =βη)? Of course, the equation itself has F on both sides so it does not
immediately define a λ-term F , like e.g. x = x/2 + 1 does not immediately
define x.

What if we abstract the recursive call, transforming it into a call of some
arbitrary function g?

F = λg. λn. if n = 0 then 1 else n · (g(n − 1)) (2.2)

This is now a valid λ-term, since it is a non-recursive definition. However,
we must now force g to act, very roughly, as f . A first attempt would be to
simply pass a copy of f to f itself, as this:

F = MM where M = λg. λn. if n = 0 then 1 else n · (g(n − 1))

This however has a problem: g will be bound to M , which is only “half”
of f . So, the recursive call g(n − 1) is actually M(n − 1), and that is not
f(n−1). However, the latter would be MM(n−1), and we can express this
by just writing the recursive call as gg(n − 1). So we can adapt the above
definition as follows:

F = MM where M = λg. λn. if n = 0 then 1 else n · (gg(n − 1))

Note that this is a proper definition for a λ-term F .
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Exercise 100. Use the above definition of F to check (2.1).

Exercise 101. Use the above definition of F to compute the factorial of 3.

Exercise 102. Write a λ-term for computing
∑n

i=0 i
2.

It is important to note that the body of any recursive function f can be
written as in (2.2), that is abstracting all the recursive calls. Writing F for
the (abstracted) body, we can see that the key property we are interested
in is

f =βη Ff

Indeed, by the β rule, the above is equivalent to the recursive definition, see
e.g. (2.1). So finding such a term f means to find a fixed point for F .

What if we had a λ-term Θ such that ΘF =βη F (ΘF ) for any F? That
would be great, because we can use that to express any recursive function,
just by writing the abstracted body and applying Θ to that. Such a Θ is
called a fixed point combinator.

Exercise 103. Write such a Θ.
Hint. This seems hard, but we know all the tricks now. Start from the
equation Θ = λF.F (ΘF ), and apply the technique shown above.
After you solved this, compare your solution to that in Sol. 310. Definition

Exercise 104. Check whether these terms have a β-normal form

Θ

KIΘ

KΘI

ΘI

ΘK

Θ(KI)

Further Exercises

Exercise 105. Assume lists of positive naturals such as [1, 2, 3] are en-
coded as Cons pp1qq (Cons pp2qq (Cons pp3qq (Cons pp0qq,Ω))), using pp0qq to
mark the end of the list. Write the following functions:

• Length returning the length of a list
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• FilterEven removing from the input list all odd numbers

• Append appending two lists

• Reverse reversing a list

• Sort sorting a list (use e.g. merge-sort)

See Sol. 313.

Exercise 106. Find an encoding for lists of arbitrary (opaque) data, and
adapt the functions seen above. What about binary trees?

2.6.5 Computing the Standard Bijections

We previously introduced bijections between the set of natural numbers N
and the cartesian product N × N, as well as the disjoint union N ⊎ N. We
now can implement these, and their inverses, in the λ-calculus.

For the cartesian product we proceed as follows:

Exercise 107. Construct Pair,Proj1,Proj2 such that:

Pair ppnqq ppmqq =βη pppair(n,m)qq
Proj1 ppnqq =βη ppproj1(n)qq
Proj2 ppnqq =βη ppproj2(n)qq

Also see Sol. 309.Definition

For the disjoint union, we instead proceed as below. Note that inverting
inL/inR actually amounts to perform a kind of if-then-else; that is, first we
need to check whether a given number is of the form inL(n) (even) or inR(n)
(odd), and then we have to compute n accordingly. This is what is done by
Case below.

Exercise 108. Construct InL, InR,Case such that:

InL ppnqq =βη ppinL(n)qq
InR ppnqq =βη ppinR(n)qq
Case ppinL(n)qq L R =βη L ppnqq
Case ppinR(n)qq L R =βη R ppnqq

Also see Sol. 309.Definition

Exercise 109. Use the functions above to construct a G such that

G ppinL(n)qq =βη ppinR(inL(n))qq
G ppinR(inL(n))qq =βη ppinR(inR(n))qq
G ppinR(inR(n))qq =βη ppinL(n)qq
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2.6.6 Representing λ-terms

In this section, we find a way to represent the syntax of λ-terms in the λ-
calculus itself. In this way, we can construct λ-terms which manipulate the
syntax of other λ-terms.

Enumeration of λ-terms. We start by enumerating the λ-terms by con-
structing a bijection # ∈ (Λ ↔ N). This associates to any λ-term M ∈ Λ
a unique numeric index #M ∈ N, forming a one-to-one correspondence.
The definition of # is given by induction over the syntax of M , and closely
follows the recursive set definition Λ ≃ Var ⊎ ((Λ × Λ) ⊎ (Var × Λ)).

Definition 110. The bijection # ∈ (Λ↔ N) is defined as follows. Definition

#M =







inL(i) if M = xi
inR(inL(pair(#N,#O))) if M = NO
inR(inR(pair(i,#N))) if M = λxi. N

Exercise 111. Check that the function # above is indeed a bijection.

Exercise 112. Compute #(λx3. x3(λx0.x0)). Then find the λ-term M hav-
ing #M = 51.

Nota Bene. Having M =βη N does not imply that #M = #N . That
is, even if two programs are semantically equivalent, their source code may
be different!

Exercise 113. Find some closed M,N such that M =βη N but #M 6= #N .

Nota Bene. Having M =α N does not imply that #M = #N . That
is, even if two programs only differ because of α-conversion (i.e. choice of
variable names), their index is different!

Exercise 114. Show that #(λx0. x0) 6= #(λx1. x1).

Representing programs We can then represent the natural #M in the
calculus exploiting Church’s numerals.

Definition 115. The function pMq is defined as follows. Definition

p−q ∈ (Λ→ Λ0)

pMq = pp#Mqq
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Constructing programs It is possible, within the λ-calculus, to con-
struct (representations of) λ-terms using the following programs.

Exercise 116. Define Var,App,Lam such that

Varppiqq =βη pxiq
ApppMqpNq =βη pMNq
LamppiqqpMq =βη pλxi. Mq

Also see Solution 311.Definition

For example,

Lam pp3qq
(

App (Varpp3qq) (Varpp2qq)
)

=βη pλx3. x3 x2q

Note that the existence of the above App is a (special case of a) result
known as the Parameter lemma, or the s-m-n lemma.

Lemma 117 (Parameter lemma, s-m-n lemma — simple version). There
exists App ∈ Λ0 such that, ∀M,N

ApppMqpNq =βη pMNq

Proof. See Solution 311.Proof

Destructing programs It is also possible, within the λ-calculus, to de-
code the representation of the λ-terms: given pMq we can detect whether
M is a variable, application, or abstraction, and in any case split its syntax
into the sub-components. The result is a kind of three-way if-then-else, as
shown below.

Exercise 118. Construct a “shallow decoder” for our bijection #, satisfying
the following.

Sd pxiq V A L =βη V ppiqq
Sd pMNq V A L =βη A pMq pNq
Sd pλxi.Mq V A L =βη L ppiqq pMq

See also Solution 312.Definition

Exploiting constructing and destructing operators it is possible to ma-
nipulate syntax in significant ways.

Exercise 119. Define a G ∈ Λ0 such that: (standalone exercises follow)
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• GpMq = pMMq

• GpMq = pMMMq

• GpMq = pM(MM)q

• GpMNq = pNMq

• Gpλx.Mq = pMq

• Gpλx. λy.Mq = pλy. λx.Mq

• GpIMq = pMq and GpKMq = pIq

• Gpλxi.Mq = pλxi+1.Mq

• GpMq = pNq where N is obtained from M replacing every variable
xi with xi+1

• GpMq = pM{I/x0}q (this does not require α-conversion)

See Solution 315 in the Appendix.

Constructing representations for naturals Given (the representation
of) a natural n, it is possible to construct (the representation of) its Church
numeral as follows.

Lemma 120. There exists Num ∈ Λ0 such that for all n ∈ N Statement

Numppnqq =βη pppnqqq

Proof.

Num = λn.Lam pp0qq
(

Lam pp1qq
(

n (App px0q) px1q
))

Indeed, Numppnqq =βη pλx0. λx1. x0(x0(· · · (x0 x1)))q = pppnqqq.

Note that, in particular, we have that

NumpMq = Numpp#Mqq =βη ppp#Mqqq = ppMqq



46 CHAPTER 2. THE λ CALCULUS

Destructing representations for naturals It is also possible to check
whether a λ-term is a numeral, as well as recovering its associated natural
value.

Exercise 121. Define IsNumeral to check, given pMq, whether M is syn-
tactically a numeral, in any possible α-converted form. That is:

IsNumeralpMq =βη T if M = (λxi. λxj. xi (xi · · · (xi xj))) ∧ i 6= j
IsNumeralpMq =βη F otherwise

Using the same technique, construct Extract such that:

Extract pppnqqq =βη ppnqq

See Sol. 318 and 319.

2.7 λ-definable Functions

In the previous sections we focused on performing several operations in the
λ-calculus, e.g. all the usual arithmetic operators. We now want to define
more formally when a λ-term M implements a given k-ary partial function
f ∈ (N N). When that happens, we say that M λ-defines f .

For total functions f , we clearly desire the following:

Mppnqq =βη ppf(n)qq

Indeed, the above is what we did when we implemented total functions such
as inL, inR, pair. Generalizing this to the general case, in which f may be
not total is unfortunately not straightforward. We want something of this
form:

when f(n) is defined, then Mppnqq =βη ppf(n)qq
when f(n) is not defined, then Mppnqq . . . (what to put here?). . .

Intuitively, above we want to state “Mppnqq does not provide a result”. Be-
low, we list several available options to state this:

Definition 122. Options for representing undefinedness:

1. when f(n) is not defined, then Mppnqq has no numeral βη-normal form.

2. when f(n) is not defined, then Mppnqq has no βη-normal form.
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3. when f(n) is not defined, then MppnqqN1 · · ·Nk has no βη-normal
form, for all N1, . . . , Nk.

Option 1 above is the most simple one: we regard anything which is not
a numeral (according to βη) as “undefined”. According to this definition,
each λ-term M has an associated function f such that M λ-defines f . Un-
fortunately, some technical difficulties arise with this option. For instance,
consider the following programs:

G = λx. xK Ω H = λxyz. y pp0qqΩ

According to option 1 above, both these programs implement the always-
undefined function. Indeed Gppnqq = ppnqqKΩ = λx1 . . . xn. Ω which is
not a numeral (it does not even have a βη-normal form). Also, Hppnqq =
λyz. y pp0qqΩ which is not a numeral (as before).

So, what is wrong with the programs G,H above? Let us try to compose
them. Intuitively, composing the always-undefined function with itself, will
yield again the always-undefined function. However, this is not the case
with the G,H programs above:

λn. G(Hn) =βη λn. H n K Ω =βη λn. K pp0qq Ω =βη λn. pp0qq

So, according to option 1 above, we can have two always-non-terminating
programs which, once composed, implement the always-defined constant
function 0. This is highly counter-intuitive, and we want to avoid this.

For the time being, it is easier if we just rule out this garbage, and
require that when f(n) is not defined, Mppnqq must not only differ from
numerals, but also differ from the garbage above. So, we discard option 1
for something stronger. Note that option 2 above is stronger, yet not strong
enough to disallow H. Instead, we shall take option 3: H is now ruled out
since

H ppnqq (λab. I) Ω =βη I

G is instead not ruled out: GppnqqN1 . . . Nk = K(. . . (KΩ))N1 . . . Nk has no
normal form, no matter how we choose the Ni. Hence Gppnqq complies with
option 3.

Option 3 is best described in terms of solvability.

Definition 123 (solvability). A closed λ-term M is solvable if there exist
N1, . . . , Nk, with k ≥ 0, such that MN1 · · ·Nk =βη I.

[Barendregt 8.3.1]
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Exercise 124. Show that if M is unsolvable, then MN is also unsolvable,
for any N .

Exercise 125. For each term in the following list, state whether it is solvable
or not.

Ω, (λx. Ω), (λx. x Ω), (λx. Ω x), KKI, Θ, SII

Exercise 126. Show that Church’s numerals can be uniformly solved by
finding M,N such that ∀n ∈ N. ppnqqMN = I.

Theorem 127. Any closed β-normal form is solvable.

Proof. We leave this as an exercise.
Hint: first, show that a β-normal form must have the form

λx1 . . . xn. xiM1 . . .Mk

for some i ∈ {1..n}. (This is called a head normal form)

Exercise 128. Let M be a closed λ-term. Show that M is solvable if and
only if there exist N1, . . . , Nk (k ≥ 0) such that MN1 . . . Nk has a βη-normal
form.Statement

The above exercise states that option 3 actually requires us to repre-
sent undefinedness with unsolvable terms. We can exploit this to define
λ-definability for partial functions:

Definition 129 (λ-definability). Given a partial function f ∈ (N N), we
say that a closed λ-term M defines f iff for all n ∈ N

Mppnqq = ppf(n)qq if n ∈ dom(f)
Mppnqq unsolvable otherwise

A partial function f is λ-definable iff it is defined by some M . This definition
is naturally extended to partial functions Nk

 N.Definition

Note that according to the above definition, the “garbage” λ-termH seen
before does not λ-define any function. Indeed, it returns something which
is not a numeral, yet solvable, and this is forbidden by the definition above.
The following exercise ensures that indeed now we can compose functions
avoiding the issues we found with terms such as H.

Exercise 130. Show that if f, g are partial λ-definable functions, then their
composition f ◦ g is such.
Hint: exploit Ex. 126, 124. See also Sol 314.
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A set A ⊆ N is said to be λ-definable whenever it is feasible, in the
λ-calculus, to check whether any given natural n ∈ N belongs to A. In other
words: A is λ-definable when the membership test “n ∈ A” is implementable
in the λ-calculus.

Definition 131. A set A ⊆ N is λ-defined by VA iff Definition

n ∈ A =⇒ VAppnqq = T

n 6∈ A =⇒ VAppnqq = F

Such a VA is said to be a verifier for A. A set A is said to be λ-definable
whenever it is λ-defined by some VA.

Exercise 132. Change T with 1 and F with 0 in the definition above, and
prove this alternative notion of λ-definability for sets to be equivalent.

Conclude that A is λ-definable if and only if its characteristic function
χA is λ-definable. Statement

Lemma 133. λ-definable sets are closed under Proof

• union (∪)

• intersection (∩)

• complement (\)

Proof. Suppose that two sets are λ-defined by VA, VB , respectively. Then,
their union is λ-defined by

λx. Or (VA x) (VB x)

Their intersection is λ-defined by

λx. And (VA x) (VB x)

Their complement is λ-defined by

λx. And (VA x) (Not (VB x))

Exercise 134. Prove that the empty set ∅, as well as the whole set N are
λ-definable. Statement

Exercise 135. Show that finite subsets of N are λ-definable. See Sol 321. Statement
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Exercise 136. Let A,B ⊆ N. Show that, if A is a λ-definable set, and
(A \B) ∪ (B \A) is finite, then B is λ-definable.

Lemma 137. Let f be a total injective λ-definable function. Let A ⊆ N,
and let B = {f(n)|n ∈ A}. If B is λ-definable, then A is such.

Proof. Let f,B be λ-defined by F,MB . Then let MA = λn.MB(Fn). Note
that MAppnqq = MBppf(n)qq. If n ∈ A, then the above evaluates to T. If
n 6∈ A, then f(n) 6∈ B since f is injective, andMBppf(n)qq evaluates to F.

2.8 Classical Computability Results in the λ-calculus

We can now finally state some classical computability results.
Recall the cardinality argument: Λ is a denumerable set, while N → N

is larger. So, we expect to find some function which is not λ-definable. We
can indeed define it through a diagonalisation process.

Existence of a non-λ-definable function. We define f ∈ (N → N) as
follows

f(n) =

{

1 if MpMq has a β-normal form, where n = #M
0 otherwise

Note that this is a total function, by construction. Also note we are applying
a term M to its own numeral index pMq. Suppose that the function above
is λ-defined by F . Then, define

M = λx.Eqpp0qq(Fx)IΩ

We now consider f(#M): by definition of f , this is either 1 or 0. If f(#M)
were equal to 1, then MpMq would have a normal form, but then

MpMq = Eqpp0qq(FpMq)IΩ = Eqpp0qqpp1qqIΩ = FIΩ = Ω

which has not a normal form — a contradiction. We must conclude that
f(#M) is equal to 0, and that MpMq has no normal form, but then

MpMq = Eqpp0qq(FpMq)IΩ = Eqpp0qqpp0qqIΩ = TIΩ = I

has a normal form — another contradiction.
Hence, such a λ-term F can not exist, i.e. the function f can not be

λ-defined.
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Lemma 138. The function f defined above is not λ-definable.Proof

Proof. The discussion above the statement actually proved it.

Exercise 139. Compare this result with Th. 37. You should find the proof
to be similar.

We can now define one of the most famous sets in computability.

Definition 140. Kλ = {#M |MpMq has a β-normal form} Definition

Note that Kλ ⊆ N.

Lemma 141. Kλ is not λ-definable Proof

Proof. By contradiction, if Kλ were λ-definable by e.g. G, then we could
λ-define the function f of Lemma 138 using this F :

F = λx.Gx pp1qq pp0qq

Indeed, f is χKλ
, the characteristic function of the set Kλ, which we proved

to be non λ-definable in Lemma 138.

2.8.1 Reduction Arguments

Suppose that, given a verifier VA for a set A, one is able to construct a
verifier VB = (λn. · · ·VA · · · ) for another set B. This actually establishes
that:

A is λ-definable =⇒ B is λ-definable

Interestingly, the above can be equivalently stated as

B is not λ-definable =⇒ A is not λ-definable

If B is known to be non-λ-definable, the above actually proves that A is
non-λ-definable.

In other words, in order to prove that a set A is not λ-definable, it is
sufficient to:

• Find a set B which is known to be non-λ-definable

• Construct a verifier VB exploiting the (hypothetical) existence of a
verifier VA

For example, the set K0
λ below is similar to the set Kλ. As for Kλ, this

set is not λ-definable: this can be proved following a reduction argument.
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Definition 142. K0
λ = {#M | Mpp0qq has a β-normal form}

Exercise 143. Prove that K0
λ is not λ-definable. (See sol. 322)

Exercise 144. Prove that {2 · n | n ∈ Kλ} is not λ-definable.

Exercise 145. Prove that {2 · n | n ∈ Kλ} ∪ {2 · n + 1 | n ∈ N} is not
λ-definable.

Exercise 146. Prove that {2 · n | n ∈ Kλ} ∪ {2 · n | n ∈ N} is λ-definable.

Exercise 147. Prove that {⌊ 100
n2+1⌋ | n ∈ Kλ} is λ-definable.

Exercise 148. Prove that Kλ = N \ Kλ is not λ-definable.

Exercise 149. Prove that function f(n) = χKλ
(n) + n2 is not λ-definable.

Exercise 150. Prove that function f(n) = χKλ
(⌊ n

42⌋) is not λ-definable.

Exercise 151. Prove that function f(n) = χKλ
(⌊42

n
⌋) is λ-definable.

Exercise 152. Prove that

f(n) =

{

#I if n ∈ Kλ

#(I I) otherwise

is not λ-definable. Then prove that (f ◦ f) is instead λ-definable.

2.8.2 Padding Lemma

Intuitively, many different programs actually have the same semantics. In-
deed, recall Ex. 113. We can actually automatically generate an infinite
number of equivalent programs.

Lemma 153 (Padding lemma). Given M , there exists N such that M =βη

N and #N > #M . Such an N can be effectively computed by a λ-term
Pad such that

PadpMq =βη pNq

Proof. Left as an exercise. See Solution 323.Proof

Using Pad we can generate an infinite number of programs equivalent
to M by just using ppnqqPadpMq, which generates a distinct program for
each n ∈ N.
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2.8.3 The “Denotational” Interpreter: a Universal Program

In the λ-calculus it is possible to construct a “self-interpreter”, i.e. a λ-term
E (“evaluate”) that, given the code pMq, can run it and behave as M .
This E is said to be a universal program, since it can be used to compute
anything that can be computed in λ-calculus. It is, in a sense, “the most
general program”.

Lemma 154 (Self-interpreter). There exists E ∈ Λ0 such that

EpMq =βη M

for all closed M . More precisely, for any M we have:

EpMq =βη M{Ω/free(M)}

where in the left hand side all the free variables of M have been substituted
by Ω. Statement

Proof. We proceed by defining two auxiliary operators.

• E′
pMqρ = M ′ where M ′ is M with each free variable xi replaced by

ρppiqq. Here, the rôle of the parameter ρ is to define the meaning of the
free variables in M , defining the value of xi as ρppiqq. This ρ is called
the environment function.

• Upd ρ ppiqq a = ρ′ where ρ′ is the “updated” environment, obtained
from ρ by replacing the value of xi with the new value a. Formally,

(Upd ρ ppiqq a)ppiqq = a
(Upd ρ ppiqq a)ppjqq = ρppjqq where i 6= j

These equations are satisfied by

Upd = λρiaj.Eq j i a (ρ j)

We can now formalize the E′ function:

E′
pxiq ρ = ρ ppiqq

E′
pMNq ρ = E′

pMq ρ (E′
pNq ρ)

E′
pλxi.Mq ρ = λa. E′

pMq (Upd ρ ppiqq a)

These equations are satisfied by:

E′ = Θ
(

λfmρ.SdmρAL
)

A = λno. f n ρ (f o ρ)

L = λin.
(

λa. f n (Upd ρ i a)
)
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After defining E′, we can just let E = λm.E′m (K Ω). Here we use KΩ
as the initial environment, so that all the free variables of the input M are
mapped to Ω. Note that, when M ∈ Λ0, the λ-term M has no free variables,
so the initial environment will never be used by E′. That is, we only invoke
the environment ρ on variables that have been defined through Upd.

Exercise 155. Check the correctness of E in some concrete (small) cases.
For instance check that EpIq = I and EpKq = K.

2.8.4 The “Operational” Interpreter: a Step-by-step Inter-
preter

Here we build a more “traditional” interpreter, i.e. another version of E.
This intrepreter evaluates the λ-term step-by-step, computing the result of
repeatedly applying the β rule (in a leftmost fashion). This allows us to
specify a “timeout” parameter, if we want to. That is, we can ask the
interpreter to run a program M for a given number k of steps, and tell us
whether M reached normal form within that time constraint k. This will be
exploited in the next chapters.

Exercise 156. Define Subst such that

SubstppiqqpMqpNq =βη pN{M/xi}q

Watch out for the needed α-conversions. See Sol. 316.

Exercise 157. Define Beta so that it performs exactly one step of β-
reduction in a leftmost-outermost fashion (recall Def. 65). Make it be a
no-op for normal forms. Formally:

BetapMq =βη pM
′
q where M

LO
−−→β M ′

BetapMq =βη pMq where M 6−→β

See also Sol. 317.

Exercise 158. Define Eta to apply →η until η-normal form is reached.

EtapMq =βη pM
′
q where M −→∗

η M ′ 6→η

Note that this requires many steps of η, in general.

Exercise 159. Define IsNF to check, given pMq, whether M is in βη-
normal form. Formally:

IsNFpMq =βη T if M 6→βη

IsNFpMq =βη F otherwise
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Exercise 160. Define IsClosed to check, given pMq, whether M is in Λ0.

Note. All the above functions can be conveniently defined using the
Θ operator, which implements recursive calls. While Θ allows arbitrarily
nested recursive calls, for the functions above we can predict a bound for
the depth of these calls. Roughly, the bound is strictly connected with
the size of the λ-term. Here, by “size” we mean the maximum nesting of
λ-abstractions or applications that occur in the syntax of the λ-term at
hand. So, for instance, a Subst operation computing N{M/x} will never
require more recursive calls than the size of N , if we write Subst in the
straightforward way — i.e. by induction on the structure of N .

Definition 161. The size of M , written |M | is defined as

|x| = 1 |NO| = 1 +max(|N |, |O|) |λx.N | = 1 + |N |

Exercise 162. Show that #M + 1 ≥ |M |, for all M .

So, all the function seen above can be rewritten, roughly, replacing Θ
with a “lesser” version of the fixed point operator, which unfolds recursive
calls only until depth #M + 1. This operator could be, e.g.

LimFix = λfnz.nfz

For instance LimFixF pp3qqΩ =βη F (F (FΩ)). By comparison, ΘF would
generate an unbounded number of F ’s.

Exercise 163. (Long) Write Subst using LimFix instead of Θ. Start
from Subst = λxmn.LimFixF (Succn) and then find F . Do the same for
the other functions seen above in this section.

We shall return on this “bounded recursion” approach when we shall
deal with primitive recursion.

Exercise 164. Construct another version of E using the results above (see
Lemma 154). Name this variant Eval. Its specification is the following:

Eval pMq =βη pprqq if M =βη pprqq
Eval pMq is unsolvable if M has no numeral as βη-normal form

Note that, unlike E, the above works only when M evaluates to a numeral.

See also Sol. 320. Definition
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Note in passing that the above function intuitively can not be constructed
using LimFix, since we do not know in advance how many steps of Beta
we need to reach the result. Indeed, we really need something like Θ here.
This idea will be made clearer in Chapter 3.

Exercise 165. Construct Eval1 as follows:

Eval1 pMq ppnqq =βη pprqq if M ppnqq =βη pprqq
Eval1 pMq ppnqq is unsolvable if M ppnqq has no numeral as βη-normal form

Hint: reuse Eval accordingly.

Exercise 166. It can be often useful to consider only the λ-terms that pro-
duce numerals. To this aim define a Term operator such that

TermpMq = I if M =βη ppnqq for some n
TermpMq is unsolvable otherwise

You might want to start from:

TermInppkqqpMq = T if M
LO
−−→

∗

β N →∗
η ppnqq for some n and N

using at most k β-steps
TermInppkqqpMq = F otherwise

which can be constructed by adapting Eval accordingly. (See Sol. 320 for
that.)

2.8.5 Kleene’s Fixed Point Theorem

We previously met fixed points as a way to model recursive programs. In
particular, we saw that constructing a recursively defined program amounts
to solve an equation of the form X = F X in which X is the unknown,
and F models the actual body of the recursive program. This allows one,
loosely speaking, to construct a program X such that the behaviour of X is
recursively defined in terms of the behaviour of X.

We now consider another form of recursive definition, modeled instead
by the equation X = F pXq. Here, the behaviour of X is recursively defined
in terms of the source code of X. That is, program X is not just recursively
invoking itself, but it is actually aware of its own source code. For instance,
X could scan its own code and count the number of applications which occur
there.

Recall that, for any F , we are always able to construct a solution for
X = F X. The same technique, slightly adapted, is also able to construct a
solution for X = F pXq. This result is also known as the second recursion
theorem.
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Theorem 167 (Kleene’s fixed point — a.k.a. second recursion theorem).
For all F ∈ Λ, there is X ∈ Λ such that Proof

FpXq =βη X

Proof. A “standard” fixed point such that FX = X could be constructed
using

X = MM M = λw.F (ww)

(compare it with the definition of the fixed point combinator Y). We adapt
this to obtain:

X = MpMq M = λw.F (Appw(Numw))

Hence,

X = MpMq

=βη F (App pMq(Num pMq))

=βη F (App pMqppMqq)

=βη FpMpMqq

= FpXq

Note the difference between Th. 167 and Lemma 154. Roughly, the for-
mer says that ∀F.∃X.FpXq = X. The latter instead says that ∃F.∀X.FpXq =
X.

Exercise 168. Show whether it is possible to construct a program P ∈ Λ0

such that. . . (each point below is a standalone exercise)

• PM = pPq for all M

• PpPq = pp1qq and Pppnqq = pp0qq otherwise

• Ppp0qq = pPq and Pppnqq = pEq otherwise

• Pppnqq = ppn + 2qq

• Pppnqq = Pppn + 1qq

• Pppnqq = Pppn +#Pqq

• Pppnqq = Succ(Pppnqq)
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• Pppnqq = pP (Pppnqq)q

• #P = #P + 1

• #P = #(PpPq)

• #P = #K

Exercise 169. Show that there exists a G ∈ Λ0 such that for all F ∈ Λ0

FpGpFqq =βη GpFq

2.8.6 Rice’s Theorem

This is one of the most important results in computability, since it shows
that a large class of interesting problems are not λ-definable.

Definition 170. A set A ⊆ N is closed under βη iff ∀M,NDefinition

#M ∈ A ∧ M =βη N =⇒ #N ∈ A

Example 171. The set A = {#M | M =βη I} is closed under βη. This is
because if we change M into an equivalent program N the property M =βη I
is preserved:

#M ∈ A ∧M =βη N =⇒ M =βη I ∧M =βη N =⇒ N =βη I =⇒ #N ∈ A

Similarly, the set B = {#M | Mpp4qq =βη pp7qq} is closed under βη.
Instead, the set C = {#M | MpMq =βη I} is not closed under βη (see the
exercise below). Intuitively, from MpMq =βη I and M =βη N we can get
NpMq =βη I but not necessarily NpNq =βη I.

Exercise 172. (Non trivial) Prove that the above C is not closed under βη.

Informally speaking, sets closed under βη are those sets which involve a
semantic property of programs, i.e. they contain all the indexes of programs
having a certain kind of behaviour. This is in contrast with sets involving
syntactic properties, such as the above C which mentions pMq. As a thumb
rule, if the definition of a set applies operations to the index of a program
M (e.g. it involves #M + 1, 2 · #M , or pMq) then the set is likely to be
not closed under βη, since it is referring to the actual syntax of the program
and not just to its behaviour6.

6Note however that {#M |E pMq =βη I} is closed under βη: the property involves the
syntax, but only the behaviour of M matters.
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Exercise 173. Prove that the following are equivalent, for any A ⊆ N:

• A is closed under βη

• for some B ⊆ N we have A = {#M | ∃N. M =βη N ∧#N ∈ B}

We can now state the main theorem:

Theorem 174 (Rice’s theorem). Let A ⊆ N. If

1. A is closed under βη

2. A 6= ∅

3. A 6= N

Then, A is not λ-definable. Proof

Proof. By contradiction, assume hypotheses 1, 2, 3 and that A is λ-defined
by some VA. Since A 6= ∅ and # is a bijection, we have #M1 ∈ A for some
λ-term M1. Similarly, since A 6= N and # is a bijection, we have #M0 6∈ A
for some λ-term M0. Then, by Kleene’s fixpoint theorem, there is a G such
that

G =βη (λg. VA g M0 M1) pGq =βη VA pGqM0 M1

Clearly, we have #G ∈ A or #G 6∈ A. We now consider both cases:

• If #G ∈ A, we have VApGq =βη T, hence

G =βη VA pGq M0 M1 =βη T M0 M1 =βη M0

Since A is closed under βη, from #G ∈ A and the above we get
#M0 ∈ A. This contradicts the previous #M0 6∈ A.

• If #G 6∈ A, we have VApGq =βη F, hence

G =βη VA pGq M0 M1 =βη F M0 M1 =βη M1

Since A is closed under βη, from #M1 ∈ A and the above we get
#G ∈ A. This contradicts #G 6∈ A.

Since in each case, we reach a contradiction, we have to conclude that a
verifier VA can not exist.
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[see also Barendregt 6.5.9 to 6.6]

Nota Bene: If a set A is not closed under βη, Rice provides no guar-
antees about A being λ-definable or not.

Rice’s theorem has a large number of consequences, stating that no non-
trivial property about the semantics of the code can be inferred from the
code itself.

Exercise 175. Which ones of these sets are λ-definable? Justify your an-
swer.

• {#M |M λ-defines f} where f is some function in N→ N

• {#M |Mpp5qq evaluates to an even numeral}

• {#M |Mpp0qq has a normal form}

• {#M |Mpp0qq has not a normal form}

• {#M |M is solvable}

• {#M |#(MM) is even}

• {#M |M has at most three λ’s inside itself}

• {#M |Mppnqq has a normal form for a finite number of n}

• {#M |Mppnqq has a normal form for a infinite number of n}

• {2 ·#M + 1|Mpp0qq =βη I}

• {f(#M)|Mpp0qq =βη I} where f(n) = 3 if n is even; f(n) = 2 o.w.

• {2 ·#M + 1|MpMq =βη I}

2.9 Summary

The most important facts in this section:

• syntax of the untyped λ-calculus

• how to program in the untyped λ-calculus:

– encoding numbers, data structures

– control flow: conditionals, loops, recursion
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• well-known combinators (including fixed-point)

• λ-definability

– constructing a non-λ-definable function

– non-λ-definable sets, Kλ

– classical results: parameter lemma, padding lemma, universal
program, Kleene’s fixed point theorem, Rice’s theorem

• intuition underlying the construction of a step-by-step interpreter
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Chapter 3

Logical Characterization of
Computable Functions

So far, our investigation focused much on the λ-calculus. Indeed, we studied
the set of functions (and sets) which are λ-definable, providing some results
and techniques for establishing λ-definability.

Henceforth, we shall gradually depart from the λ-calculus. We will gen-
eralize our results in a more abstract setting which is not defined in terms
of the λ-calculus, or any other programming language. There, we shall no
longer speak about functions which are “computable in the λ-calculus”; we
will rather talk about “computable” functions, simply.

In order to do that, in this chapter we provide an alternative, equivalent
definition for “f is a λ-definable partial function”. The main point in doing
this is that this alternative characterization only involves functions. That is,
we can define the set of computable functions without referring to a specific
programming language.

3.1 Primitive Recursive Functions

Lemma 176. The function zero(n) = 0 is λ-definable. Proof

Proof. Take Kpp0qq.

Lemma 177. The function succ(n) = n+ 1 is λ-definable. Proof

Proof. Take Succ.

Lemma 178. The projection functions πk
i (n1, . . . , nk) = ni with 1 ≤ i ≤ k

are λ-definable. Proof

63
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Proof. Take λn1 · · ·nk. ni.

Note: the above includes the identity function f(n) = n.

Lemma 179. The λ-definable (partial) functions are closed under compo-
sition.Statement

Proof. Let f, g be λ-defined by F,G. Then, f ◦ g can be λ-defined by

M = λx.J(F (Gx))

where J is the jamming factor Gx(KI)I, as per Ex. 126 and Ex 130. Let
us check this:

• When f(g(n)) is defined, then g(n) is defined as somem ∈ N and f(m)
is defined as well. Then, when x = ppnqq, we have J = I, Gppnqq = ppmqq,
and Fppmqq = ppf(g(n))qq. It is then trivial to check that Mppnqq =
ppf(g(n))qq.

• When f(g(n)) is undefined, then either g(n) is undefined, or g(n) =
m ∈ N but f(m) is undefined.

– If g(n) is undefined, then Gppnqq is unsolvable, so J is also un-
solvable by Ex. 124, so Mppnqq is also unsolvable by the same
Exercise.

– If g(n) = m ∈ N but f(m) is undefined, then J = I, Gppnqq =
ppmqq, and Fppmqq is unsolvable. So, Mppnqq = J(Fppmqq) =
Fppmqq is unsolvable as well.

The above result can be generalized to n-ary functions:

Lemma 180. The λ-definable (partial) functions are closed under general
composition. That is, if f ∈ (Nk

 N) and g1, . . . , gk ∈ (Nj
 N), then the

function

h(x1, . . . , xj) = f(g1(x1, . . . , xj), . . . , gk(x1, . . . , xj))

is λ-definable.

Proof. Easy adaptation of Lemma 179.
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Lemma 181. The λ-definable functions are closed under primitive recur-
sion. That is, if g, h are λ-definable, so is f(n, n1, . . . , nk), inductively de-
fined as:Statement

f(0, n1, . . . , nk) = g(n1, . . . , nk)
f(n+ 1, n1, . . . , nk) = h(n, n1, . . . , nk, f(n, n1, . . . , nk))

Proof. Let G,H be the λ-terms defining g, h. Then f is λ-defined by

F =λnn1 · · ·nk.J Snd
(

n A (Cons pp0qq (Gn1 · · ·nk))
)

A =λc. J ′ Cons (Succ (Fst c)) (H (Fst c) n1 · · ·nk (Snd c))

where J and J ′ are the usual jamming factors to force the evaluation of h
and g:

J = Gn1 · · ·nk (KI) I
J ′ =H (Fst c)n1 · · ·nk (Snd c) (KI) I

The F above works starting from the pair 〈0, g(n1, . . . , nk)〉. Then we apply
n times a function to this pair, incrementing the first component, and ap-
plying h to the second. Finally, we take the resulting pair and extract the
second component.

The above results actually prove that the λ-calculus is able to imple-
ment the so-called primitive recursive functions, defined below. This class
of functions plays an important role in Computability theory.

Definition 182. The set of the primitive recursive functions PR is defined
as the smallest set of (total) functions in Nk → N which: Definition

• includes the constant zero function zero, the successor function succ,
and the projections (“the initial functions”) πk

i ; and

• is closed under general composition; (see Lemma 180 for the defini-
tion); and

• is closed under primitive recursion (see Lemma 181 for the definition).

Lemma 183. If f ∈ PR, then f is a total function. Statement

Proof. Direct from the definition of PR.

Lemma 184. Each f ∈ PR is λ-definable.

Proof. Direct from the previous lemmata.
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Exercise 185. Show that the following functions are in PR.

• the “conditional” function (“if-then-else”):

cond(0, x, y) = y cond(k + 1, x, y) = x

• boolean operators and, or, not (let 0 denote “false”, and the rest denote
“true”)

• the addition,subtraction (return e.g. 0 when negative), multiplication,division
(return e.g. 0 when impossible): add,mul, sub, div

• the less-than-or-equal comparison: leq(x, x+ k) = 1, and 0 otherwise

• the equality comparison: eq(x, x) = 1, and 0 otherwise

• the factorial function

• the pair, inL, inR functions for pairs and disjoint union (easy), as well
as their inverses (not so easy).

Exercise 186. Show that if f is a binary function and f ∈ PR, then the
function g given by g(x, y) = f(y, x) is in PR as well.

We can further compare PR to the set of λ-definable functions. We
know that each f ∈ PR is λ-definable. Clearly, if we take a λ-definable
non-total function, this is not in PR, so the λ-definable functions form a
larger set that PR.

What if we restrict to total λ-definable functions, then? We can prove
that the set of total λ-definable functions is still larger than PR.

Basically, each f ∈ PR is either one of the basic functions or obtained
from them through composition/primitive recursion in a finite number of
steps. This is not different from having a kind of programming language
“PR” having exactly the constructs mentioned in Def. 182. As we did for
the λ-calculus we can enumerate this PR language using the pair, inL, inR
functions. After that, we use a diagonalization argument, and construct
a function f(n) as follows: 1) take the PR program which has n as its
encoding, 2) run it using n as input, 3) take the result r, and 4) let f(n) =
r + 1. By diagonalization, we have f 6∈ PR. Yet, f can be λ-defined! We
just need to write an interpreter for this PR language in the λ calculus in
order to define f . This can be done as we did for E.

Exercise 187. Define the “PR language” as we did for Λ, and an encoding
PR ↔ N. Then, λ-define an interpreter for this PR language.
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Using this interpreter, we can clearly λ-define the total f defined above,
proving that λ-definable functions form a larger set than PR functions.

Theorem 188. The set of λ-definable functions is strictly larger than PR
functions. Statement

Proof. See the discussion above.

3.1.1 Ackermann’s Function

This is another interesting total function that is λ-definable but not in PR.

ack(0, y) = y + 1
ack(x+ 1, 0) = ack(x, 1)
ack(x+ 1, y + 1) = ack(x, ack(x+ 1, y))

[also see Cutland page 46]

Exercise 189. Show that ack is λ-definable.

Note the “double recursion” in the last line. This is not a problem in
the λ calculus, but in PR we can only express “single” recursion. It is not
obvious whether this form of double recursion can be somehow expressed
using the single recursion of PR.

It turns out that ack is not a primitive recursive function. So, this form
of “double recursion” is (generally) not allowed in PR. The actual proof for
ack 6∈ PR is rather long, so we omit it. We however provide some intuition
below.

Roughly, the proof relies on ack to grow at a very, very high speed.
Observe the following. We have ack(1, y) = y + 2, as well as ack(2, y) =
3 + 2 · y > 2 · y. Note the rôle of y and 2 here: from y + 2 (addition) we
went to 2 ·y (multiplication) by just incrementing the first parameter to ack.
Moreover, ack(3, y) > 2y (exponential), and ack(4, y) > 22

2
...

where there
are y exponents. And this goes on, generating very fast-growing functions.

Indeed, the ack beats each function in PR:

∀f ∈ PR.∃k ∈ N.∀y ∈ N. ack(k, y) > f(y)

The above can be proved by induction on the derivation of f (we omit the
actual proof, which is non trivial). From here, one can prove that ack 6∈ PR
by contradiction: if ack ∈ PR, we also would have that f(y) = ack(y, y)
is a primitive recursive function. By the statement above, we get some k
such that ∀y ∈ N. ack(k, y) > ack(y, y). If we now choose y = k, we get a
contradiction.
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Exercise 190. Let us recap the main proof techniques:

• If we take A = PR ∪ {ack}, do we get the whole set of total functions
N→ N ?

• Let B be the closure of A under general composition and primitive
recursion. Is B the whole set N→ N ?

• Is B the set of total λ-definable functions?

3.2 General Recursive Functions

Exercise 191. Let f(x, y) be a total λ-definable function. Show that

g(x, z) = µy < z.
(

f(x, y) = 0
)

is a total λ-definable function. By µy < z.
(

f(x, y) = 0) we mean the least y
such that y < z and f(x, y) = 0. If such a y does not exist, we let the result
to be z. This operation is called bounded minimalisation.

Exercise 192. Let f(x, y) be in PR. Show that

g(x, z) = µy < z.
(

f(x, y) = 0
)

is in PR. So primitive recursive functions are closed under bounded mini-
malisation.

We now investigate what is missing from the definition of PR that makes
it different from the whole λ-definable functions. Basically, the problem
boils down to constructing an interpreter of the λ calculus using the PR
operators, that is:

“What is missing for (a variant of) E to be a function in PR ?”

Consider the construction of the step-by-step interpreter Eval, given in
Ex. 164. All the basic constituents (Beta, Eta, IsNumeral, IsNF, Subst)
can be defined using LimFix, which is basically the same thing of the prim-
itive recursion operator: it iterates a function for a fixed number of times.
So, these constituents can be indeed constructed inside PR. For instance,
∃ subst ∈ PR such that

subst(i,#M,#N) = #(N{M/xi})

and so on for the other basic functions. This means that the “single-step”
function, implementing a single leftmost →β step, is actually in PR.
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Lemma 193. The functions

subst ∈ N3 → N

beta ∈ N→ N

eta ∈ N→ N

isNumeral ∈ N→ N

isNF ∈ N→ N

app ∈ N2 → N

num ∈ N→ N

which are the arithmetic equivalents of the λ-terms Subst,Beta,Eta,IsNumeral,
IsNF,App,Num, are in PR.

Proof. Left as a (long, and not so trivial) exercise. You might want to start
from subst(x, n,m) = aux(x, n,m, 2m).

Exercise 194. Show that the function extract(#ppnqq) = n is in PR. (Make
it work on all possible α-conversions of ppnqq. Also, define extract(x) = 0 for
other inputs x.)

So what is missing for a full interpreter? We do not know how many
→β steps are needed to reach normal form. For a full interpreter, we need
unbounded iteration of the single-step function. So, we can augment PR
with an unbounded minimalisation operator.

Definition 195. The set of (partial) general recursive functions (R) is
defined as the smallest set of partial functions in Nk

 N which: Definition

• includes the constant zero function zero, the successor function succ,
and the projections (“the initial functions”) πk

i ; and

• is closed under general composition (see Lemma 180 for the definition);
and

• is closed under primitive recursion (see Lemma 181 for the definition);
and

• is closed under unbounded minimalisation (defined below).

Unbounded minimalisation is defined as follows: given f(x, y), we construct
g(x) as

g(x) = (µy. f(x, y) = 0)
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where the above, intuitively, means “the least y ∈ N such that f(x, y) = 0,
provided f is defined for smaller values of y”. More formally,

g(x) = min{y | f(x, y) = 0 ∧ ∀z < y.f(x, z) defined}

Note that g(x) is undefined whenever the set above is empty: this may happen
because e.g. f(x, y) > 0 for all y, or even because f(x, y) > 0 for y ∈ {0 . . . 4}
but f(x, 5) is undefined. In that case, g is a strictly partial (i.e. non-total)
function. This definition is naturally extended to n-ary functions in Nk

 N.

Exercise 196. Show that the following functions are in R:

• f = ∅ (the always-undefined function)

• f(x) = 524 (constant function)

• f(0) = 1 and f(n+ 1) = undefined

• f(2 · n) = 1 and f(2 · n+ 1) = undefined

• ack(x, y) (hard)
Hint: one way to do it is by implementing a stack using pair.

Lemma 197. The λ-definable functions are closed under unbounded mini-
malisation.Statement

Proof. Let f be λ-defined by F . Then, g(x) = (µy. f(x, y) = 0) can be
λ-defined by

G = Θ(λgyx.Eq pp0qq (Fxy) y (g(Succ y)x))pp0qq

Lemma 198. The set of recursive functions R is included in the set of
λ-definable functions.

Proof. Immediate by all the lemmata above.

Exercise 199. Show that g(x) = (µy. f(x, y) = 1) is recursive when f is
such. (Hint: use eq and negation.)

Theorem 200. The set of λ-definable functions coincides with the set of
recursive functions R.Statement
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Proof. We already proved that each f ∈ R is λ-definable. Now we prove that
if f is λ-definable (say by F ), then f ∈ R. By Exercise 185, proj1, proj2 ∈
PR, so by Lemma 193, and Exercise 194, we can define the following func-
tions in R:

steps(x, 0) = x

steps(x, n+ 1) = beta(steps(x, n))

eval(x) = extract(proj1(µn. and(A,B) = 1)

where A = isNumeral(C)

B = eq(C, proj1(n))

C = eta(steps(x, proj2(n)))

f(y) = eval(app(#F, num(y)))

We now claim that we indeed have ∀y. f(y) = f(y). First, we note that
app(#F, num(y)) = app(#F,#ppyqq) = #(Fppyqq).

• If f(y) is undefined, then Fppyqq has no normal form. So, no matter
what proj2(n) evaluates to, the function steps will perform that many
β-steps on x, but will not reach the index of a β-normal form. So,
A will always evaluate to “false” (i.e. zero), since isNumeral syntacti-
cally checks against numerals, which are in normal form. Hence, the
and(A,B) will always return “false”, and the minimalisation operator
µn will keep on trying every n ∈ N, in an infinite loop, and so making
f(y) undefined.

• If f(y) is defined, say f(y) = z ∈ N, then Fppyqq has as its normal
form the numeral ppzqq. Define k as the number of leftmost →β steps
needed to reach normal form. Therefore, eta(steps(#(Fppyqq), k)) will
completely evaluate Fppyqq until βη normal form, producing the index
of a λ-term M , which is an α-conversion1of ppzqq. The minimalisation
operator µn will try each n ∈ N, from 0 upwards.

– When 0 ≤ n < pair(#M,k), we show that and(A,B) returns
“false” (zero), so that the minimalisation will try the next n. By
contradiction, assume that and(A,B) returns “true”. This means
that A andB are both “true”. SinceA is “true”, eta(steps(#(Fppyqq), proj2(n)))

1Recall Exercise 114. While we know that M is of the form λab. a(a(a(· · · (a(ab))))),
it still might be syntactically different from ppzqq by picking different variable names for a

and b. This mainly depends on the fact that we do not require our beta function to choose
exactly the variables we use in the definition of ppzqq.
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is the index i of a numeral, hence the index of a normal form of
Fppyqq. Since we need to do k steps to reach normal form, we
have2 proj2(n) ≥ k. This implies that i = #M . Since B is
“true”, proj1(n) = i = #M . Hence n = pair(proj1(n), proj2(n)) =
pair(#M, proj2(n)) ≥ pair(#M,k), contradicting n = pair(proj1(n), proj2(n)) <
pair(#M,k).

– So, eventually the µn operator will try n = pair(#M,k). Here, it
is trivial to check that A andB are both “true”, so the loops halts.
Indeed, we have that eta(steps(#(Fppyqq), k)) is a numeral (so A is
“true”3), and indeed eta(steps(#(Fppyqq), k)) = #M = proj1(n)
(so B is “true”).

So, the result of the whole µn. · · · expression is pair(#M,k). After we
compute this, the definition of eval performs a proj1, hence obtaining
#M . Finally, the extract function is applied, extracting z from the
index of M =α ppzqq. We conclude that, when f(y) = z, we have
f(y) = z.

Since we proved both inclusions, we conclude that the set of λ-definable
functions coincides with R.

Exercise 201. Provide an alternative proof for Th. 200, following these
hints.

First, define a function g that given i, x, k will run program number i
on input x for k steps, assume the result is a numeral (hence a normal
form), and extract the result as a natural number. When the result is not
a numeral, return anything you want (e.g. 0). Show that g is recursive
(actually, in g ∈ PR).

Then, define a partial function h that given i, x returns the number of
steps k required for program number i to halt on input x, reaching normal
form. Function h is undefined when no such k exists. Use minimalisation
for this.

Finally, build eval using g and h.

Exercise 202. Exploiting the functions seen above, prove that the following

2The function beta has to be applied at least k times to reach normal form. After
normal form is reached, we required beta to act as the identity.

3Recall we require isNumeral to return “true” on all α-conversions of numerals.
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are total recursive functions:

termAt(#M,x, k) =











1 if Mppxqq reaches some β-normal form N in

exactly k β-steps, with N =η ppyqq for some y ∈ N

0 otherwise

termIn(#M,x, k) =











1 if Mppxqq reaches some β-normal form N in

at most k β-steps, with N =η ppyqq for some y ∈ N

0 otherwise

3.3 T,U-standard Form

This classical result states that every partial recursive function can be ex-
pressed by using the primitive recursion constructs and a single use of the
unbounded minimalisation operator.

Theorem 203. There exist T,U ∈ PR such that, each (partial) recursive
function f ∈ R can be written as Statement

f(x) = U(µn.T(i, x, n) = 0)

for some suitable natural i (which depends on f).

Proof. We have already proved this when we proved Theorem 200. Indeed,
the definition of f in that proof mentions a single µn operator, using only
primitive recursive functions inside of the µn, as well as outside of it. So
T and U simply are defined in that way. The natural number i is instead
the index #F for some λ-term F that defines the function f ∈ R. This F
indeed exists by Lemma 198.

3.4 The FOR and WHILE Languages

Consider an imperative language having the following commands. Below we
use x for variables (over N), e for arithmetic expressions over variables, and
c for commands.

• Assignment: x:= e

• Conditional: if x = 0 then c1 else c2

• Sequence: c1 ; c2
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• For-loop: for x := e1 to e2 do c

Name this language “FOR”.

The semantics of this language should be mostly obvious. We assume
that e1 and e2 are evaluated only once, at the beginning of the for-loop.
For instance, the command

y := 6 ;

for x := 1 to y do

y := y + 1

will terminate, performing exactly six loop iterations. Further, we assume
that the loop variable x is updated to the next value in the sequence from
e1 to e2, even if the loop body modifies the variable x. For instance,

sum := 0 ;

for x := 1 to 6 do

sum := sum + x ;

x := x - 1

will terminate, performing exactly six loop iterations. When the loop is
exited, the variable sum has value 0+ 1+ 2+ 3+ 4+ 5+ 6 = 21. Note that,
under these assumptions, our for-loops will always terminate.

Exercise 204. Define the formal semantics of the FOR language, as a
function N→ N. Assume the input of FOR programs is just provided through
a special input variable. Similarly, read the output of the program through
a special output variable, to be read at the end of execution.

Definition 205. A function f is FOR-definable if there is some FOR-
program that has semantics f .

Theorem 206. The set of FOR-definable functions is exactly PR.Statement

Proof. Left as a (rather long) exercise. You basically have to 1) simulate all
the constructs of PR using the FOR-commands, and 2) simulate all FOR-
commands using the PR-constructs. This can be done by exploiting the
pair function to build arrays, so to store the whole execution state in a few
variables.

Now, we can extend the FOR language with the following construct:

• While-loop: while x > 0 do c
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Name this language “WHILE”. Note that, unlike FOR programs, WHILE
programs might not terminate.

Exercise 207. Define the semantics of WHILE programs.

Definition 208. A function f is WHILE-definable if there is some WHILE-
program that has semantics f .

Theorem 209. The set of WHILE-definable functions is exactly R. Statement

Proof. (sketch)
(⊆): a WHILE interpreter can be written in the λ-calculus (long exercise).
So, each WHILE-definable function is in R by Th. 200.
(⊇): Let f ∈ R. We must find a WHILE program defining f . Take T,U as in
Th. 203. By Th. 206, T and U are FOR-definable, hence WHILE-definable.
Following again Th. 203, all we have to do is to “add the missing µn” and
compose T and U so to actually compute f . A single while construct is
sufficient to try each n ∈ N, thus emulating the µn operator.

Theorem 210. Every WHILE-definable function can be WHILE-defined by
a program having a single while loop.

Proof. Direct consequence of Th. 203.

3.5 Church’s Thesis

Roughly, all programming languages can be proved equivalent w.r.t. the
λ-calculus as we did for the WHILE language; that is, the set of the {λ,
WHILE, Java, . . . }-definable functions does not depend on the choice of the
programming language L. All you need to check is that

• all λ-definable functions are definable in the language L; e.g. you can
write an interpreter for the λ-calculus in L

• all L-definable functions are definable in the λ-calculus; e.g. you can
write an interpreter for L in the λ-calculus

The Church’s Thesis is an informal statement, stating that

The set of intuitively computable functions is exactly the set
of functions definable in the λ-calculus (or Java, or Turing ma-
chines, or 〈insert your favourite programming language here〉).

Notable languages not equivalent to the λ-calculus:
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• Plain HTML (with no Javascript). HTML just produces a hyper-
text, possibly formatted (e.g. by using CSS). However, you can not
use HTML to “compute” anything. Indeed, it is not a programming
language, but a hypertext description language.

• Plain SQL query language. It just searches the database for data, and
return the results. It can not be used for general computing. Again,
it is not a programming language, but only a query language. This
is actually good, because SQL queries can therefore be guaranteed to
terminate.

Notable languages equivalent to the λ-calculus:

• PostScript. It should only describe a document. It allows for general
recursion, so it could take a long time just to output one page. It can
also loop, and fail to terminate, while requiring more and more mem-
ory. PostScript can also produce an infinite number of pages. By Rice,
there is no effective way of predicting how many pages a PostScript
file will print, since the number of pages is a semantic property.

• XSLT and XQuery. They should only perform some simple manipu-
lation over XML. Due to some recursive constructs, they are actually
able to achieve the power of the λ-calculus. So, it might happen that
their execution does not terminate, allocating more memory, etc.

• Javascript. This is indeed a full-featured programming language. Run-
ning it inside a browser allows for arbitrary interaction with HTML,
but exposes the browser to denial of service attacks, since the Javascript
program can allocate more and more memory and fail to terminate.
Näıve execution of Javascript can easily cause the browser to freeze.
Firefox currently tries to mitigate the issue in this way. It runs the
Javascript for a given amount of time (say 20 seconds). If it fails to
halt, Firefox asks the user if he/she wants to abort the Javascript com-
putation, or wait for other 20 seconds, after which the same question
is asked to the user again.

• Turing Machines (deterministic and non-deterministic ones)

• “Conventional” imperative programming languages: C, C++, Pascal,
Basic (and dialects), Java, C#, Perl, Python, Ruby, PHP, Fortran,
Algol, Cobol, . . .
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• “Conventional” functional programming languages: Lisp (and dialects),
ML (and dialects such as Caml, Ocaml, F#), Haskell, . . .

• Some languages based on other paradigms: prolog, π-calculus

• Type 0 grammars

• The language in which the configuration file sendmail.cf of Sendmail
is written.

• Conway’s game of Life

3.6 Summary

The most important facts in this section:

• primitive recursive functions (subset of total functions)

• general recursive functions (subset of partial functions)

• λ-definable functions coincide with general recursive functions

– proof of ⊇

– intuition about the proof of ⊆
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Chapter 4

Classical Results

In this chapter we present some classical Computability results. We will
mainly focus on recursive functions here, without referring to the λ-calculus
except in rare cases. In this way, the classical results we will establish are
not merely facts which hold in the world of the λ-calculus, but are instead
general results about any programming language, or any formalism which is
able to describe what is a “computation”.

More precisely, we depend on the λ-calculus for the following results:

• the existence of a T,U-standard form (seen in Th. 203)

• the s-m-n theorem (to be stated — Th. 216)

• the padding lemma (to be stated — Lemma 215)

Therefore, should we wish to apply the other classical results to another
programming language, e.g. Java, we would merely need to re-establish the
items above.

Enumerating the recursive functions The T,U-standard form pro-
vides a means to explicitly enumerate the recursive functions:

R = {U(µn.T(i, x, n) = 0) | i ∈ N}
= {U(µn.T(0, x, n) = 0)

, U(µn.T(1, x, n) = 0)
, U(µn.T(2, x, n) = 0)
. . .
}

We will use the following notation for this:

79
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Definition 211. Let i be a natural. We then define the partial function φi

as φi(x) = U(µn.T(i, x, n) = 0). This definition is also extended to k-ary
partial functions φi(x1, . . . , xk).Definition

Lemma 212. R = {φi | i ∈ N}Statement

Proof. Immediate from the definition of φ and Th. 203.

Note that, since we used an interpreter of the λ-calculus to define our
functions T,U, indexes i actually correspond to λ-terms and φi can be con-
cretely defined as follows:

Lemma 213. Let M be the program corresponding to i, i.e. #M = i. Then:
Statement

φi(x) =

{

y if Mppxqq =βη ppyqq

undefined if Mppxqq has no numeral βη-normal form

Proof. Left as an exercise.

In general, we shall not rely on the above lemma, so to account for the
possibility that recursive functions φi are enumerated differently, e.g. follow-
ing Java programs.

4.1 Universal Function Theorem

There is a recursive function which is “universal”: this is a binary function
eval1 such that any recursive function f(x) can be written as eval1(i, x) for
some i. So, in a sense, the universal function is the “most general” recursive
function. Pragmatically, this universal function represents the behaviour of
an interpreter for a programming language, where the natural i encodes a
program which implements function f .

Theorem 214 (Universal Function).
The partial function eval1(i, x) = φi(x) is recursive.
This can be generalized to n-ary partial functions as well.Statement

Proof. This is a direct consequence of the T,U-standard form. Indeed,

eval1(i, x) = U(µn. T(i, x, n) = 0)

hence eval1 is a composition of recursive functions, hence it is computable.

Also see [Cutland]
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4.2 Padding Lemma

Lemma 215 (Padding Lemma).
There is a total injective function pad ∈ R such that Statement

φn = φpad(n) ∧ pad(n) > n

Proof. Immediate from the Padding Lemma for the λ-calculus. Indeed, it is
enough to implement the function

pad(#M) = #(I M)

which is clearly recursive (it is λ-defined by App pIq) and also injective,
since #M 6= #N =⇒ #(IM) 6= #(IN). The fact that pad(n) > n derives
directly from the definition of #, while φ#M = φ#(IM) derives from M and
IM having the same behaviour.

Also see [Cutland]

The above proof exploits the λ-calculus, so it would need to be adapted
if we would like to work with other programming languages. For instance,
in Java one could instead perform padding by adding dummy statements
(“x = x + 0;”) instead of adding an extra I as we do above.

An immediate consequence of the Padding Lemma is that if a function
f is recursive, then there is an infinite number of indexes i such that φi = f .
Indeed, given just one such i, we can construct an infinite strictly-increasing
sequence pad(i), pad(pad(i)), . . . of alternative indexes for f . Further, note
that this sequence can be generated by a program, since pad is recursive.
Finally, note that the generated sequence is not composed of all the possible
indexes of function f , but merely lists an infinite number of them. This
can be intuitively seen from the fact that from #(λx.pp0qq) we can not reach
#(λx. Mul x pp0qq) through repeated padding, yet both are indexes for the
same function zero.

4.3 Parameter Theorem (a.k.a. s-m-n Theorem)

The Parameter Theorem, or s-m-n Theorem, states that it is possible to me-
chanically transform an index i of a (n+m)-ary function f(x1, . . . , xm, y1, . . . , yn)
into an index j of the n-ary function g(y1, . . . , yn) = f(k1, . . . , km, y1, . . . , yn)
where ki are given constants. Technically, it is stated as follows:
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Theorem 216 (Parameter Theorem, s-m-n Theorem).
For all naturals m,n > 0 and, there exists a total recursive injective function
smn (i, x1, . . . , xm) such that for all i, x1, . . . , xm, y1, . . . , yn we have Statement

φi(x1, . . . , xm, y1, . . . , yn) = φsmn (i,x1,...,xm)(y1, . . . , yn)

Proof. Easy adaptation of the Parameter Lemma for the λ-calculus. Indeed,
it is enough to implement the function

smn (#M,x1, . . . , xm) = #(M ppx1qq . . . ppxmqq)

which is clearly recursive and injective.

Also see [Cutland]
Again, we exploit the λ-calculus in above proof, so it would need to

be adapted in the case we would like to work with another language. For
instance, in Java, function s could work as follows. Suppose we are given an
index i of the following program:

int f(int x, int y) { ...〈 some code here 〉 ...}

We can then compute, say, s11(i, 42) by syntactically changing the above
code, so to return an index of the following:

int f(int y) { int x=42; ...〈 some code here 〉 ...}

The above indeed behaves as wanted.

Exercise 217. Show that pad and smn are actually primitive recursive func-
tions.

Typical application. The typical application of the s-m-n theorem is,
broadly speaking, to construct computable functions returning indexes of
programs without having to explicitly manipulate the program syntax.

To better explain this, we use an example in the λ-calculus. Consider a λ-
term H which syntactically manipulates λ-terms according to the following
specification. (For the sake of simplicity, we assume that F is closed)

HpFq =βη pλx0. Mul (F x0) x0q

This can be implemented by e.g.:

H = λf. Lam pp0qq
(

App (App pMulq (App f (Var pp0qq))) (Var pp0qq)
)
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Whenever F implements function f(x), the above evaluates to an index of a
program which on input x returns f(x) · x. That is, program H transforms
any implementation of f(x) into an implementation of g(x) = f(x) · x. Fur-
ther, we note that this transformation is total: HpFq always halts returning
some index, whatever F might be.

The above transformation relies on the fact that function f is imple-
mented in the λ-calculus, so that we can exploit our term constructors
Var,App,Lam. However, the same goal, i.e. turning implementations of f
into implementations of g, can be achieved in the framework of the general
recursive functions R without making any reference to the λ-calculus, by
exploiting the s-m-n theorem as follows.

First, we start by defining a binary auxiliary function aux(i, x):

aux(i, x) = φi(x) · x

The above function can be written as aux(i, x) = mul(eval1(i, x), x), hence it
is a composition of recursive functions, and so it is recursive. We can then
pick an index for that: let a be such that φa(i, x) = aux(i, x). Then, we
exploit the s-m-n theorem to define

h(i) = s11(a, i)

By construction, h is a recursive total function which satisfies

φh(i)(x) = aux(i, x) = φi(x) · x

When i is an index of f , i.e. when φi = f , we have then

φh(i)(x) = φi(x) · x = f(x) · x = g(x)

Hence, h transforms any index of f into an index of g, and this transforma-
tion is computable.

Note that the above h performs essentially the same operation of the
above λ-term H. The advantage of constructing the recursive function h
instead of writing the program H lies in the fact that writing H requires
one to work inside the λ-calculus, while the construction of h relies on the
s-m-n theorem and the universal function, only, so it is independent from
our choice of the λ-calculus as a reference programming language.

More concretely: had we chosen to use Java programs (or Turing Ma-
chines, or . . . ) to enumerate the set of recursive functions, letting φi be the
function computed by the Java program with index i, then the construction
of the λ-term H above becomes irrelevant, since we would need to work with



84 CHAPTER 4. CLASSICAL RESULTS

Java instead of λ, while the construction of h is still solid. Indeed, once the
universal function theorem and the s-m-n theorem are established for Java,
the definition of h is unchanged.

Convention. The above technique is frequently used when dealing with
m-reductions (which we shall see in Sect. 4.8.2). Indeed, the reasoning shown
above for constructing h is so common that it is convenient to introduce a
custom notation for that. Consequently, with some abuse of notation, we
shall write

h(i) = #
(

λx. φi(x) · x
)

for denoting the h constructed above. More generally:

Definition 218. Let b be a recursive partial function. We writeDefinition

h(i) = #
(

λx. b(i, x)
)

for the total recursive injective function defined as h(i) = s11(j, i), where j is
an index of b, i.e. φj(i, x) = b(i, x).

Nota Bene. The actual result of the h above depends on the choice of
the index j. However, no matter which index j of b is chosen, we always
have that φh(i)(x) = b(i, x).

Nota Bene 2. While a λ occurs in the notation above, the construction
of h does not really involve the λ-calculus, but only the smn function.

Nota Bene 3. Do not forget to check that b ∈ R before using the above
notation!

4.4 Kleene’s Fixed Point Theorem, a.k.a. Second
Recursion Theorem

This is the generalization of Th. 167 for the λ-calculus.

Theorem 219 (Kleene’s Fixed Point Theorem (a.k.a. Second Recursion
Theorem)).
For each total recursive function f , there is some n ∈ N such thatProof

φn = φf(n)

Proof. We adapt the proof of Th. 167. By Th. 214, the following is recursive:

g(x, y) = φf(s(x,x))(y)
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so φa = g for some a. Taking n = s(a, a), we have, for all y,

φn(y) = φs(a,a)(y) = φa(a, y) = g(a, y) = φf(s(a,a))(y) = φf(n)(y)

Also see [Cutland]

Example. This is typically used whenever we want to construct a function
which “depends on one of its indexes i”. For instance, suppose we want to
construct a recursive function f = φi such that

f(x) = φi(x) = χ{i}(x) =

{

1 if x = i

0 otherwise

The above φi detects whether the input x is actually the index i: in such
case it returns 1, otherwise it returns 0. In the λ-calculus, we would have
used the second recursion theorem for λ on the equation

F =βη (λix. Eq i x pp1qq pp0qq)pFq

In the context of the recursive functions, instead we consider the function

h(i) = #

(

λx.

{

1 if x = i

0 otherwise

)

The above is well defined, since its body b(i, x) = χ{i}(x) is indeed recursive.
Therefore, h ∈ R is total, and so by the second recursion theorem above we
have that for some i

φi = φh(i)

Hence, we get what we wanted:

φi(x) = φh(i)(x) =

{

1 if x = i

0 otherwise

4.5 Recursive Sets

Recall that a function is recursive if and only if it can be implemented by
some computer program. We extend this notion to sets: a set A is called
recursive whenever there exists a program VA which, given an input n, is
able to check whether n ∈ A or not. That is, VA returns 1 (“true”) on
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n ∈ A, and 0 (“false”) otherwise. Any such program VA is called a verifier
for A. Formally, the existence of such a VA is equivalent to requiring the
characteristic function χA to be recursive.

Definition 220. A set A ⊆ N is recursive iff the function χA is recursive.
With some abuse of notation, we write A ∈ R iff A is recursive. A program
implementing χA is called a verifier.Definition

Of course, the above coincides with λ-definability for sets.

Exercise 221. Prove that A ∈ R if and only if A is λ-definable.
In particular, this implies that 1) finite sets are recursive, and that 2) re-
cursive sets are closed under binary union and intersection, as well as com-
plement.Statement

The lemma below basically states that functions defined by cases are
(partial) recursive, provided that we use a R condition, a R “then” branch,
and a R “else” branch.

Lemma 222. Let f, g ∈ R and A ∈ R. Then,Statement

h(x) =

{

f(x) if x ∈ A

g(x) otherwise

is a recursive function.
The above can be generalized to multiple variables, e.g. using h(x, y),

f(x, y), g(x, y), pair(x, y) ∈ A.

Proof. Let i, j such that φi = f , φj = g. Then, h(x) = eval1(cond(χA(x), i, j), x)
is a composition of recursive functions.

Exercise 223. Why in the proof above it is not sufficient to write h as
follows?

h(x) = χA(x) · f(x) + (1− χA(x)) · g(x)

Kleene’s Set. The set Kλ is the typical example of non-λ-definable set.
We now generalize its definition so that it is no longer centered on the λ-
calculus, and we prove that non recursive by adapting our previous proof
accordingly.

Definition 224. K = {n|φn(n) is defined}Definition

Lemma 225. K 6∈ RProof
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Proof. Similar the the argument for Kλ. By contradiction, if K ∈ R, then

f(n) =

{

undefined if n ∈ K

0 otherwise

would be a recursive function by Lemma 222. Hence, f = φa for some a.
However,

• if a ∈ K, then φa(a) = f(a) = undefined, so a 6∈ K: a contradiction;

• if a 6∈ K, then φa(a) = f(a) = 0, so a ∈ K: a contradiction.

In any case we reach a contradiction, hence K 6∈ R.

4.6 Rice’s theorem.

We now re-state Rice’s theorem, essentially repeating the same proof we saw
for the λ-calculus in the framework of the recursive functions. We start by
generalizing the notion of “A closed under βη” as follows:

Definition 226. A set A ⊆ N is semantically closed if and only if Definition

∀i, j.
(

i ∈ A ∧ φi = φj =⇒ j ∈ A
)

A useful characterization of semantically closed sets is shown below.
Basically, a set is semantically closed if and only if it contains all the indexes
for some set of recursive functions.

Lemma 227. A is semantically closed if and only if A = {i|φi ∈ F} for
some set of functions F ⊆ R. Statement

Proof. (⇒) Let A be a semantically closed set. Then, define F = {φi|i ∈ A}.
It is then easy to check the thesis: indeed,

• If i ∈ A, φi ∈ F by definition of F .

• If φi ∈ F , then by definition of f there exists j such that φi = φj and
j ∈ A. Since A is semantically closed, this implies i ∈ A.

(⇐) Let F ⊆ R and A defined as in the statement. Then A is semanti-
cally closed because,

i ∈ A ∧ φi = φj =⇒ φi ∈ F ∧ φi = φj =⇒ φj ∈ F =⇒ j ∈ A
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We can now state Rice’s theorem. Compare this with Th. 174.

Theorem 228 (Rice). Let A ⊆ N such that Proof

1. A is semantically closed;

2. A 6= ∅;

3. A 6= N.

Then, A 6∈ R.

Proof. (Note: for the exam, you can choose between this proof or the alter-
native one which we provide after the Rice-Shapiro theorem.)

By contradiction, assume 1,2,3 hold but we have A ∈ R. Since A 6= ∅,
we can pick a1 ∈ A. Also, since A 6= N, we can pick a0 6∈ A. Then, we let

h(n) = #

(

λx.

{

φa0(x) if n ∈ A

φa1(x) otherwise

)

The body of above is recursive by Lemma 222, hence h is recursive total.
By the second recursion theorem, we have φi = φh(i) for some i. However:

• If i ∈ A, then φi(x) = φh(i)(x) = φa0(x) by definition of h. Since A is
semantically closed, this implies a0 ∈ A: a contradiction.

• If i 6∈ A, then φi(x) = φh(i)(x) = φa1(x) by definition of h. Since A is
semantically closed, and a1 ∈ A, we have i ∈ A: a contradiction.

In any case we reach a contradiction; hence we conclude that A can not be
recursive.

4.7 Recursively Enumerable Sets

For the Kleene set K there is no verifier VK, as we proved. Indeed, there is
no way to implement the characteristic function

χK(n) =

{

1 if n ∈ K

0 otherwise

It is however possible to implement the semi-characteristic function

χ̃K(n) =

{

1 if n ∈ K

undefined otherwise
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Indeed, χ̃K(n) = φn(n) · 0 + 1 = eval1(n, n) · 0 + 1, so it can be computed
using a universal program.

Sets having a recursive semi-characteristic function are said to be recur-
sively enumerable.

Definition 229. A set A ⊆ N is recursively enumerable (A ∈ RE) if and
only if χ̃A ∈ R. Definition

The above definition is actually equivalent to requiring the existence of
a program SA which halts on A, and loops forever on Ā. That is, a program
which implements a function f whose domain is exactly A. Such a SA is
called a semi-verifier.

The next two lemmata formalize the above statement.

Lemma 230. A ∈ RE if and only if A = dom(f) for some partial f ∈ R Statement

Proof. (⇒) Immediate from A = dom(χ̃A) and the definition of RE .
(⇐) Let f ∈ R be such that dom(f) = A. Then, we have χ̃A(x) =

1 + 0 · f(x) since this evaluates to 1 exactly when f(x) is defined, i.e. when
x ∈ dom(f); otherwise it is undefined. Hence χ̃A is a composition of recursive
functions, so it is recursive.

More concretely, one can characterize RE sets using the λ-calculus as
follows, hence relating RE sets to their semi-verifiers.

Exercise 231. A ∈ RE if and only if there exists a λ-term SA such that Statement

SAppnqq =βη I if n ∈ A
SAppnqq unsolvable if n 6∈ A

Such a SA is said to be a semi-verifier of A.

Note the difference between a verifier VA and a semi-verifier SA for
a given set A. A verifier has to halt on all inputs, and always return
“true/false” according to whether the input belong to A or not. A semi-
verifier instead halts whenever the input belongs to A, and loops forever
otherwise. Note that, for instance, a verifier VA can be used in a guard of an
if-then-else to check whether n ∈ A. Instead, a semi-verifier SA could sim-
ilarly be used in such a guard, but with the proviso that the “else” branch
now becomes unreachable: this in because when n 6∈ A the evaluation of
the guard would loop forever, instead of yielding “false”. We shall formalize
this fact later, in Lemma 240.
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Relating RE with R. RE sets are strictly related to recursive sets by
the following result: a set A is recursive if and only if both A and Ā are
recursively enumerable sets.

Lemma 232. A ∈ R =⇒ A ∈ REProof

Proof. Given VA, one can construct a semi-verifier by letting

SA = λn. VA n I Ω

Indeed,

• n ∈ A =⇒ SAppnqq =βη T I Ω =βη I

• n 6∈ A =⇒ SAppnqq =βη F I Ω =βη Ω hence it is unsolvable

Alternative proof, without referring to the λ-calculus:
Direct from the definition of χ̂A and Lemma 222 since

χ̃A(x) =

{

1 x ∈ A

undefined otherwise

and the constant 1 function and the always-undefined function are recursive.

Lemma 233. A ∈ RE ∧ Ā ∈ RE =⇒ A ∈ RProof

Proof. Given two semi-verifiers SA, SĀ for A and Ā, we execute them “in
parallel” to construct a verifier for A. In order to check whether x ∈ A, we
run this program:

For k ranging from 0 to +∞:
run SAppxqq for k steps; if it halts, return “true”
run SĀppxqq for k steps; if it halts, return “false”

Each single iteration of the above loop halts, since we are running the semi-
verifiers for a given amount of steps, only. Further, the whole loop eventually
has to stop. Indeed, either x ∈ A or x ∈ Ā; therefore either SAppxqq halts
or SĀppxqq halts; hence as soon as k reaches the right number of steps, a
semi-verifier is found to stop. When we detect that, we discovered whether
x ∈ A or not. So we “abort” the parallel execution of the other semi-verifier
and return the result.



4.7. RECURSIVELY ENUMERABLE SETS 91

Alternative proof, without referring to the λ-calculus:
We have χ̃A, χ̃Ā ∈ R. Let i, j such that φi = χ̃A and φj = χ̃Ā. Then, let

g(x) = µn.(or(isZero(T(i, x, n)), isZero(T(j, x, n))) = 1)

Such g is recursive, since it is a composition of recursive functions. Also, g
is total because it composes total functions, and an n satisfying the above
always exists. Indeed, whenever x ∈ A, T(i, x, n) = 0 for some n. Instead,
when n ∈ Ā, we have T(j, x, n) = 0 for some n.

Then, it is easy to check that

χA(x) =

{

1 if T(i, x, g(x)) = 0

0 otherwise

which is recursive by Lemma 222.

Exercise 234. Construct the λ-term of the verifier used in the proof above.

Lemma 235. A ∈ RE ∧ Ā ∈ RE ⇐⇒ A ∈ R Proof

Proof. Immediate by the lemmata above.

More on Kleene’s set While K is not recursive, it is recursively enumer-
able.

Lemma 236. K ∈ RE Proof

Proof. Indeed, using the universal program, we can write a semi-verifier for
K. On input n, we just execute the program having index n in input n.

Alternative proof.
We have K = dom(f) where f(n) = φn(n) = eval1(n, n), which is recursive
by Th. 214.

The complement of K instead is the typical example of a non recursively
enumerable set.

Lemma 237. K̄ 6∈ RE Proof

Proof. Immediate by Lemma 235 and K ∈ RE \ R.
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Fundamental properties of RE sets.

Lemma 238. RE sets are closed under binary union and intersection. That
is: Proof

A,B ∈ RE =⇒ A ∪B ∈ RE
A,B ∈ RE =⇒ A ∩B ∈ RE

Proof. Let A,B ∈ RE .

(A ∩ B) We have χ̃A∩B(x) = χ̃A(x) · χ̃B(x) which is recursive, being a
composition of recursive functions.

(A ∪B) The proof is similar to the one of Lemma 233. Given two semi-
verifiers SA, SB for A and B, we execute them “in parallel” to construct a
semi-verifier for A ∪B. In order to check whether x ∈ (A ∪B), we run this
program:

For k ranging from 0 to +∞:
run SAppxqq for k steps; if that halts, stop
run SBppxqq for k steps; if that halts, stop

Each single iteration of the above loop halts, since we are running the semi-
verifiers for a given amount of steps, only. Further, the whole loop stops
only when either SAppxqq or SBppxqq halt. Indeed, when x ∈ A ∪ B the loop
stops as soon as we find a number of steps k which makes a semi-verifier
halt. Instead, when x 6∈ A ∪ B, the above loop will try all possible values
for k, hence it never halts.

Since the program above stops exactly on A ∪B, that is therefore RE .

Alternative proof, without referring to the λ-calculus:
We have χ̃A, χ̃B ∈ R. Let i, j such that φi = χ̃A and φj = χ̃B. Then, let

g(x) = µn.(or(isZero(T(i, x, n)), isZero(T(j, x, n))) = 1)

Such g is recursive, since it is a composition of recursive functions. It is then
easy to check that

χ̃A(x) = 1 + 0 · g(x)

which is recursive (being a composition of recursive functions).

Lemma 239. RE sets are not closed under complement.Proof

Proof. K ∈ RE but K̄ 6∈ RE .
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The lemma below is a variant of Lemma 222. It basically states that
functions defined by cases are (partial) recursive provided that we use a
RE condition, a recursive “then” branch, and an undefined “else” branch.
Note that, in general, if we use something other than undefined in the “else”
branch the function at hand is no longer guaranteed to be recursive.

Lemma 240. Let f ∈ R and A ∈ RE. Then, Proof

h(n) =

{

f(n) if n ∈ A

undefined otherwise

is recursive.

The above can be generalized to many variables, as for Lemma 222.

Proof. Direct from h(n) = f(n) · χ̃A(n).

Alternative Characterizations for RE. The following lemma provides
several different characterizations of RE sets.

Lemma 241 (Characterizations of RE). All the following properties of a
set A ⊆ N are equivalent Proof

1. A ∈ RE

2. A = ∅ or A is the range of some total recursive function

3. A = {n | ∃m. pair(n,m) ∈ B} for some B ∈ R

4. A is the range of some partial recursive function

Proof. (1 =⇒ 2) If A is empty, it is straightforward. Otherwise, we can
pick x ∈ A, and let A = dom(φa). Then, define

f(n) =

{

proj1(n) if running φa(proj1(n)) halts in proj2(n) steps
x otherwise

The above f is a total recursive function, since it can be implemented using
the step-by-step interpreter (or, more pedantically, defined using Kleene’s
function T).

We have ran(f) = A because:

• (ran(f) ⊆ A) If y ∈ ran(f) implies y = f(n) for some n, so either
y = x ∈ A, or y = proj1(n) ∈ dom(φa) = A.
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• (A ⊆ ran(f)) If y ∈ A, then φa(y) halts in some number of steps k.
Hence f(pair(y, k)) = y, which so belongs to ran(f).

(2 =⇒ 3) If A = ∅, taking B = ∅ suffices. Otherwise, let A = ran(f), for
a total recursive f . In this case, take B = {pair(f(x), x)|x ∈ N}. This B is
recursive since:

χB(n) = eq(proj1(n), f(proj2(n)))

Note that the above is true because f is total: otherwise, the right hand
side might be undefined.

Then, we conclude by

{n|∃m. pair(n,m) ∈ B} = {n|∃m,x. pair(n,m) = pair(f(x), x)} =
= {n|∃m,x. n = f(x) ∧ m = x} = {n|∃x. n = f(x)} = ran(f) = A

(3 =⇒ 4) Given B ∈ R, consider the following partial function:

f(x) =

{

proj1(x) if x ∈ B
undefined otherwise

Clearly, f ∈ R by Lemma 222. Also, ran(f) = {proj1(x) | x ∈ B} = A.

(4 =⇒ 1) By hypothesis, A is the range of a partial recursive function f .
Take a such that f = φa. We construct a semi-verifier SA as follows. Take
n as input, and run the following:

For i ranging from 0 to +∞:
Run φa(proj1(i)) for at most proj2(i) steps
If that halts, and φa(proj1(i)) = n, stop (e.g. return 1)
Otherwise, try the next i

This can be actually implemented in the λ-calculus using the step-by-step
interpreter; alternatively, the function computed by the program above can
be defined using the minimalisation operator µ (to try all possible i’s) and
the Kleene’s function T.

Let j be the index of the program above (or any index of the associated
function). In order to conclude that A = ran(f) ∈ RE it suffices to check
check that dom(φj) = ran(f). Concretely:

• (ran(f) ⊆ dom(φj)) If n ∈ ran(f), then n = f(x), and φa(x) can be
computed in y steps, for some x and y. So, when i = pair(x, y) the
loop above stops, therefore n ∈ dom(φj).



4.7. RECURSIVELY ENUMERABLE SETS 95

• (dom(φj) ⊆ ran(f)) If n ∈ dom(φj), then the loop stops, so f(proj1(i)) =
n for some i, and n ∈ ran(f).

Summary. The implications we proved above form a cycle 1 =⇒ 2 =⇒
3 =⇒ 4 =⇒ 1, so the properties 1, 2, 3, 4 are equivalent.

Intuitively, Lemma 241(3) states that any RE set “differs” from a R set
by an existential quantifier. More precisely, suppose that a property p(x)
admits a semi-verifier; that is, a program Sp(x) which halts exactly whenever
p(x) is true. Then, property p(x) can be equivalently written as ∃y. q(x, y)
for some property q which admits a (full) verifier; i.e., a program Vq(x, y)
which outputs “true” whenever q(x, y) holds, and “false” otherwise.

Further, by Lemma 241(3) also the opposite holds: if q(x, y) admits a
verifier, then p(x) = ∃y, q(x, y) admits a semi-verifier.

The exercises below extend the above lemma to many existential quan-
tifiers.

Exercise 242. Prove the following.
A ∈ RE if and only if

A = {n | ∃l,m. pair(n, pair(l,m)) ∈ B} for some B ∈ R

The above can be generalized to an arbitrary number of variables.

Also see Sol. 325.

Exercise 243. Prove the following.
A ∈ RE if and only if

A = {n | ∃m. pair(n,m) ∈ B} for some B ∈ RE

Hint: exploit Ex. 242. Also see Sol. 326.

Exercise 244. (Recommended) Apply Ex. 243 so to prove that A = {i | φi(3) =
φi(5) = 4} ∈ RE.

(Or, alternatively, apply Lemma 241)

Also see Sol .327.

Exercise 245. Prove that A ∈ RE if and only if A = {proj2(b) | b ∈ B} for
some B ∈ R.

Exercise 246. Prove that A ∈ RE if and only if A = {proj2(b) | b ∈ B} for
some B ∈ RE.
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Relating RE with Kλ.

Lemma 247. Kλ ∈ RE

Proof. We have Kλ = {n|∃m. pair(n,m) ∈ B} where

B = {pair(n,m)|n = #M ∧MpMq reaches normal form in m steps}

B is recursive, since it checks only for a given number of steps, so by
Lemma 241, Kλ ∈ RE .

Lemma 248. Kλ 6∈ RE

Proof. Immediate by Lemma 235 and Kλ ∈ RE \ R.

4.8 Reductions

4.8.1 Turing Reduction

Sometimes, it is interesting to pretend that in the λ-calculus some function
or set is λ-definable, even if we do not know if they are, or even if we know
they are not. More precisely, we consider a specific function/set and extend
the λ-calculus with a specific construct to compute/decide that function/set.
The overall result is a new language where that function/set is just forced to
be computable. Clearly, this is a purely theoretical device, since we can not
actually build a “computer” which is able to run this extended λ-calculus.
To build that “computer” we would need a “magic” hardware component
which enables us to compute the function/set. This component is usually
named an “oracle”. Even if this construction is a bit bizarre, it is useful to
understand the relationships between undecidable sets.

To keep things simple, we just considers sets.

Definition 249. When we extend the λ-calculus with an oracle for a set A,
we speak about (λ+A)-calculus.

The syntax of the (λ+A)-calculus is

M ::= x | MM | λx.M | VA

where VA is a specific constant. The semantics is given by =A
βη defined as

before, but extended with

VAppnqq→
A
β T when n ∈ A

VAppnqq→
A
β F otherwise

The notion of (λ + A)-definability is then derived from the notion of λ-
definability by using =A

βη instead of =βη.
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Here’s an important definition for comparing sets, by reducing one set to
another. Informally, it states that A is no more difficult to decide than B.

Definition 250 (Turing-reduction). Given A,B ⊆ N, we write A ≤T B
when, the set A can be (λ + B)-defined. We write A ≡T B when A ≤T B
and B ≤T A.

Exercise 251. Prove the following statements:

• ≤T is a preorder (e.g. is reflexive and transitive)

• A ≤T B for any A ∈ R, and any B ⊆ N

• A ≡T Ā for all A, in particular Kλ ≡T K̄λ

• Kλ ≡T K

• If A,B ≤T C, then A ∪B ≤T C

• If A,B ≤T C, then {pair(x, y) | x ∈ A ∧ y ∈ B} ≤T C

• If A,B ≤T C, then {inL(x) | x ∈ A} ∪ {inR(x) | x ∈ B} ≤T C

• If A ∈ R and B ≤T A, then B ∈ R

• From A ∈ RE and B ≤T A, we can not conclude that B ∈ RE (in
general)

This notion of reduction is useful as it enables us to prove that a set A
is not λ-definable, by showing that B ≤T A for some B that is known to be
λ-undefinable.

Exercise 252. Consider the (λ + Kλ)-calculus. Can every partial function
f ∈ N N be (λ+ Kλ)-defined?

4.8.2 Many-one Reduction

Another useful notion of reduction is the following:

Definition 253 (many-one-reduction, a.k.a. m-reduction).
Given A,B ⊆ N, we write A ≤m B when there is a total recursive function
f (“a m-reduction”) such that Definition

∀n ∈ N.
(

n ∈ A ⇐⇒ f(n) ∈ B
)

We write A ≡m B when A ≤m B and B ≤m A.
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To check whether some function f is a m-reduction usually one exploits
the following property:

Exercise 254. Prove that a total f ∈ R is an m-reduction between A and
B if and only if, for all nStatement

• n ∈ A =⇒ f(n) ∈ B

• n 6∈ A =⇒ f(n) 6∈ B

Lemma 255. A ≤m B =⇒ A ≤T B

Proof. Trivial: let f be the total recursive m-reduction from A to B. Let
f be λ-defined by F . Then VA = λn. VB (F n) defines A in the (λ + B)-
calculus.

Lemma 256. A ≤m B ⇐⇒ Ā ≤m B̄Proof

Proof. Directly from the definition, using the same f , since

(

n ∈ A ⇐⇒ f(n) ∈ B
)

is equivalent to
(

n 6∈ A ⇐⇒ f(n) 6∈ B
)

which is equivalent to
(

n ∈ Ā ⇐⇒ f(n) ∈ B̄
)

The following is a fundamental property: any set which is m-reducible
to a R set is R, and any set which is m-reducible to a RE set is RE .

Lemma 257. If B ∈ R and A ≤m B, then A ∈ R.
If B ∈ RE and A ≤m B, then A ∈ RE.Proof

Proof. If f is any m-reduction between B and A, it is easy to check that

χA(x) = χB(f(x)) χ̃A(x) = χ̃B(f(x))

So, A ∈ R whenever B ∈ R. Also, A ∈ RE whenever B ∈ RE .

Lemma 258. A ≤m K =⇒ A ∈ REProof

Proof. Immediate from the lemma above.
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Lemma 259. ≤m is a preorder, i.e., a reflexive and transitive relation.Proof

Proof. We have A ≤m A with m-reduction id (which is total recursive).
Further, if A ≤m B with m-reduction f and B ≤m C with m-reduction

g, then we have A ≤m C with m-reduction h(n) = g(f(n)) which is indeed
total and recursive.

Exercise 260. Prove that K 6≤m K̄ and K̄ 6≤m K. Statement
See Sol. 324.

Lemma 261. K is RE-complete (or m-complete), that is: K ∈ RE and for
any A ∈ RE, A ≤m K. Proof

Proof. We have already proved that K ∈ RE . For the second part, let A be
any RE set. Consider

f(n) = # (λx. χ̃A(n))

That is, f(n) is returning an index of a program which discards its input,
and computes instead χ̃A(n). This f is well-defined since χ̃A ∈ R. So, f is
a total recursive function (by Def. 218).

Let us check that f is an m-reduction from A to K.

n ∈ A ⇐⇒ χ̃A(n) defined ⇐⇒ φf(n)(f(n)) defined ⇐⇒ f(n) ∈ K

Lemma 262. A ∈ RE if and only if A ≤m K Proof

Proof. Immediate from the lemmata above.

Exercise 263. Verify that

h(n) = #(λx. φn(0))

m-reduces K0 = {n|φn(0) is defined} to K. Then, state whether K0 ∈ RE.

Exercise 264. Verify that

h(n) = #(λx. φn(n))

m-reduces K to K0 = {n|φn(0) is defined}. Then, state whether K0 ∈ R.

Exercise 265. Verify that

h(n) = #(λx. φn(n))

m-reduces K̄ to A = {n | dom(φn) finite}. Then, state whether A ∈ RE.
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Exercise 266. Verify that

h(n) = #

(

λx.

{

undefined if running φn(n) halts within x steps

0 otherwise

)

m-reduces K̄ to A = {n | dom(φn) infinite}. Then, state whether A ∈ RE.

Exercise 267. Verify that K̄ ≤m A = {n | dom(φn) = N}. Then, state
whether A ∈ RE .

Exercise 268. Define A so that A, Ā 6∈ RE.

Exercise 269. Verify that

h(n) = #

(

λx.

{

undefined if running φn(n) halts within x steps

x otherwise

)

m-reduces K̄ to A = {n | ran(φn) infinite}. Then, state whether A ∈ RE.

Exercise 270. Let A = {n+1 | φn(n) is defined}. Prove that A ≤m K and
K ≤m A.

Exercise 271. Let x ∈ A and y 6∈ A. Prove that

A \ {x} ≤m A ∧ A ∪ {y} ≤m A

Exercise 272. Prove that A ∈ R if and only if A ≤m {0, 1, 2, 3}.

Exercise 273. Prove that when A ∈ RE we have

A ≤m {n | ∀x. φn(2 · x) = 42}

Exercise 274. Let A = {n | φn(2) 6= 42}.

• Let i such that φi(x) = undefined for all x. State whether i ∈ A.

• Prove that A is not recursive. Then prove that Ā = {n | φn(2) = 42}
is also not recursive.

• Prove that Ā is RE, and conclude that A 6∈ RE.

• Also check that K̄ ≤m A.

Exercise 275. (Technical) Prove that K ≡m Kλ. From this, deduce that
A ∈ RE if and only if A ≤m Kλ.
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4.9 Rice-Shapiro Theorem

The Rice-Shapiro theorem provides a general sufficient criterion for proving
that a set is not RE .

Recall that, when f, g are partial functions, g ⊆ f means that

g(n) = m ∈ N =⇒ f(n) = m

That is, when g(n) is defined, f(n) is too, and has the same value m. Note
that when g(n) is not defined, f(n) may be anything: either undefined, or
defined to some m.

Theorem 276 (Rice-Shapiro).
Let F be a set of partial recursive functions, i.e. F ⊆ R. Further, let
A = {n|φn ∈ F} be RE. Then, for each partial recursive function f , Proof

f ∈ F ⇐⇒ ∃g ⊆ f. dom(g) is finite ∧ g ∈ F

Proof. Since f is recursive, f is λ-defined by some F . Since A ∈ RE , we
can not have K̄ ≤m A: this will be used below.

• (⇒) By contradiction, assume f ∈ F but for each finite g s.t. g ⊆ f
we have g 6∈ F .

We now obtain a contradiction by proving K̄ ≤m A. The reduction h
is the following:

h(n) = #

(

λx.

{

undefined if φn(n) halts in (at most) x steps
f(x) otherwise

)

Note that the above h is well-defined, since the condition “. . . halts in
x steps” is decidable, and f ∈ R. So, h ∈ R is total recursive.

Let us check h is indeed a reduction:

– If n 6∈ K, then φh(n) = f since “φn(n) halts in x steps” is always
false. So, φh(n) ∈ F , hence h(n) ∈ A

– If n ∈ K, we have that φn(n) halts in, say, j steps. So, for x < j
we have φh(n)(x) = f(x), while for x ≥ j we have that φh(n)(x) is
undefined. This implies that φh(n) is a finite restriction of f : φh(n)

finite and φh(n) ⊆ f . By assumption, no such finite restriction of
f belongs to F . Hence, h(n) 6∈ A.
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• (⇐) By contradiction, there is some finite g ⊆ f with g ∈ F , but
f 6∈ F .

We now obtain a contradiction by proving K̄ ≤m A. The reduction h
is the following:

h(n) = #

(

λx.

{

f(x) if x ∈ dom(g) or n ∈ K

undefined otherwise

)

Such an h is well-defined because dom(g) is finite (hence decidable) and
K isRE , so we have a semi-verifier for the property “x ∈ dom(g) or n ∈
K” which is what we need above. Indeed, h(n) is a total recursive
function.

Let us check h is indeed a reduction:

– If n 6∈ K, then φh(n)(x) = f(x) when x ∈ dom(g), and undefined
otherwise. So, φh(n) is f restricted to dom(g), which implies
φh(n) = g since g ⊆ f . Therefore, φh(n) ∈ F . We conclude
h(n) ∈ A.

– If n ∈ K, then φh(n)(x) = f(x) for all x. This implies φh(n) = f 6∈
F , hence h(n) 6∈ A

Common Use. Usually, Rice-Shapiro is used to prove that some set is
not RE . This can be done in two ways, depending whether we use the (⇒)
or (⇐) direction of the theorem. We summarize these typical arguments
below. Let A = {n|φn ∈ F} with F ⊆ R.

• Rice-Shapiro (⇒): to prove A 6∈ RE it suffices to

– pick some f ∈ F , and

– show that all the finite restrictions g of f do not belong to F .

• Rice-Shapiro (⇐): to prove A 6∈ RE it suffices to

– pick some f 6∈ F , and

– pick some finite restriction g of f which belongs to F .
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4.9.1 Rice’s Theorem, again

Here’s an alternative proof to Th. 228, which exploits the Rice-Shapiro the-
orem instead of the second recursion theorem.

Theorem 277 (Rice). Let A ⊆ N be a semantically closed set, A 6= ∅ and
A 6= N. Then, A 6∈ R.

Proof. We have A, Ā ∈ R, so A, Ā ∈ RE . By Lemma 227, A = {i|φi ∈ F}
for some set of functions F ⊆ R. That implies that Ā = {i|φi 6∈ F} =
{i|φi ∈ (R \ F)}. Let φi be the always-undefined function g∅, which has a
finite domain. For all partial functions f , we have g∅ ⊆ f . Clearly, i is in
one of the sets A, Ā.

• If i ∈ A, then φi = g∅ ∈ F . By Rice-Shapiro (⇐), we have f ∈ F for
all recursive f , hence F = R, and so A = N.

• If i ∈ Ā, then φi = g∅ ∈ (R \ F). By Rice-Shapiro (⇐), we have
f ∈ (R \ F) for all recursive f , hence R \ F = R, and so Ā = N,
implying A = ∅.

Also see [Cutland]

Exercise 278. Check that the statement above is indeed equivalent to the
one given in Th. 228. (Exploit Lemma 227)

Exercise 279. For any of these sets, state whether the set is R, or RE \R,
or not in RE.

• K ∪ {5}

• {1, 2, 3, 4}

• {n|φn(2) = 6}

• {n|∃y ∈ N. φn(y) = 6}

• {n|∀y ∈ N. φn(y) = 6}

• {n|φn(n) = 6}

• {n|dom(φn) is finite}

• {n|dom(φn) is infinite}
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• {n|φn is total}

• {n + 4|dom(φn) is finite}

• { ⌊100/(n + 1)2⌋ | dom(φn) is infinite}

• A ∪B, A ∩B, A \B where A,B ∈ RE

• A ∪B, A ∩B, A \B where A ∈ RE, B ∈ R

• {inL(n) | n ∈ A} ∪ {inR(n) | n ∈ B} where A,B ∈ RE

• {n | ∀m. pair(m,n) ∈ A} where A ∈ RE

• {pair(n,m) | pair(m,n) ∈ A} where A ∈ RE

• {f(n) | n ∈ A} where A ∈ RE and f ∈ R, f total

• {f(n) | n ∈ A} where A ∈ RE and f ∈ R (may be non total)

• {n | f(n) ∈ A} where A ∈ RE and f ∈ R, f total

• {n | f(n) ∈ A} where A ∈ RE and f ∈ R (may be non total)
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Exercise 280. Solve the following related exercises:

1. Let f the following function

f(0, i) = i
f(n+ 1, i) = pad(f(n, i))

Prove that f ∈ PR.

2. Given j ∈ N, consider the two sets

A = {i | φi = φj}
B = {i | ∃n. i = f(n, j)}

where f is the function above. Prove that A 6∈ RE, while B ∈ R.
Conclude that the two sets are (very!) different.

Exercise 281. Consider the Euler’s constant e as an infinite sequence of
decimal digits

e = 2.71828182846 · · · = d0 . d1 d2 d3 · · ·

• State whether f(n) = dn is a recursive function.

• Consider A = {n | ∃k. dk = dk+1 = · · · = dk+n−1 = 7}. Is A ∈ R? Is
A ∈ RE?

• Consider

B =

{

n
∑

i=0

10n−i · dk+i

∣

∣

∣

∣

∣

k, n ∈ N

}

Prove that B ⊆ N. Do we have B ∈ RE ? Argue whether you think B
to be recursive.

Exercise 282. (Tricky) Construct A ⊆ B ⊆ C such that A 6∈ RE , B ∈ R,
C 6∈ RE .

Exercise 283. (Hard) Show that f ∈ R where

f(n) =

{

k if running φn(n) halts in k steps
undefined otherwise

Then show that there is no total recursive g such that f ⊆ g.
Finally, show that {n|∃i. φn ⊆ φi ∧ φi total} 6∈ RE.
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Exercise 284. (Hard) Prove that there exists a bijection f ∈ (N↔ N) such
that f 6∈ R.

Exercise 285. Let A ∈ RE. Define B = {n|∃m ∈ A.n < m}. Can we
deduce B ∈ RE ? What about C = {n|∀m ∈ A.n < m} ?

Exercise 286. Given a λ-term L and a Java program J , let φ#L and ϕ#J

be the respective semantics, as functions N N (assume #J to be the index
of the Java program J , defined using the usual encoding functions). Then,
consider A = {pair(#L,#J) | φ#L = ϕ#J}. Is A ∈ R? Is it RE?

Exercise 287. Let A ∈ R, and B = {n | ∃m. pair(n,m) ∈ A}. We know
that B ∈ RE by Lemma 241. Can we conclude that B ∈ RE \ R ?

Exercise 288. Consider the following formal language: (a, b are two con-
stants)

X := a | b | (XX)

and an equational semantics =γ given by

((aX)Y ) =γ X
(((bX)Y )Z) =γ ((XZ)(Y Z))
(XY ) =γ (X ′Y ′) when X =γ X ′ and Y =γ Y ′

=γ is transitive, symmetric, reflexive

Define #X as the index of X using the usual encoding functions. Discuss
whether you expect the sets below to be in R, RE\R, or not in RE , justifying
your assertions. (Note: I do not expect a real proof, but correct arguments.)

• {#X | X =γ a}

• {pair(#X,#Y ) | X 6=γ Y }



Chapter 5

Suggestions for the Exam

The following are random suggestions for the written exam.

• When applying Rice-Shapiro, do not forget to specify whether you are
using it in the ⇒ direction or in the ⇐ one.

• Remember that when equating results of partial functions (as in φi(0) =
φj(1)), we mean that either 1) both sides of the equation are defined,
and evaluate to the same natural number, or 2) both sides are unde-
fined.

Note that, as a consequence, the sets A and B below are different.
Indeed, we have A ∈ RE while B 6∈ RE .

A = {n | φn(0) defined and 6= 3} B = {n | φn(0) 6= 3}

• Avoid misreading A ∈ RE as A ∈ (RE \ R).

• Avoid memorizing all the details in proofs. You should be able to
memorize only the key points you need to reconstruct all the rest.
Many proofs in these notes are actually “exercises” you should know
to solve with very little help from memory. (E.g. how do you prove
K̄ 6∈ R ? K̄ 6∈ RE ?)

5.1 In Practice: Common Techniques Recap

Below we provide a list of some techniques which are frequently used when
solving exercises. This list is by no means exhaustive: in general, there is
no silver bullet which can answer all the questions. Still, most standard
questions can be answered using the techniques below.

107
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5.1.1 Justifying f ∈ R

• . . . by writing a program P implementing f , and arguing why it is
indeed doing so. P (x) must halt when x ∈ dom(f), and loop forever
otherwise. We can use the λ-calculus for writing P , but it is not
necessary: pseudo-code is perfectly fine.

• . . . by using Lemma 222 or Lemma 240. This is possible when f is
defined by cases, as follows:

f(x) =

{

g(x) if 〈condition〉

h(x) otherwise

In this case it is possible to claim f ∈ R when either 1) the condition
is recursive and g, h are also recursive or 2) the condition is only RE ,
g is recursive, and h is always undefined (just having a recursive h is
not enough). In the cases in which both 1) and 2) are false, f may be
recursive or not recursive depending on the specific case: no general
conclusion can be stated.

Pitfall. Be careful in not claiming f 6∈ R when 1) and 2) do not
apply. This would be a serious mistake.

• . . . by directly using the definition of recursive function. E.g., we ex-
press f as a composition of functions which are already known to be
recursive. For instance, polynomials can be computed by composing
sum and product, which are recursive.

• . . . by proving that dom(f) is finite. In this case an implementation
can be written using a finite number of if-then-elses. If dom(f) =
{x1, . . . , xn} and yi = f(xi) are the corresponding values, then an
implementation is as follows:

F (x) : if x = k1then return y1
else ifx = k2then return y2
. . .
else ifx = knthen return yn
else loop forever

5.1.2 Justifying f 6∈ R

• . . . by contradiction, through a reduction argument. Typical cases in-
clude:



5.1. IN PRACTICE: COMMON TECHNIQUES RECAP 109

– Proving that if, by contradiction, we had f ∈ R, we also would
have some set A ∈ R, which we define involving f somehow.
Then, we prove A 6∈ R and reach a contradiction.

Example 289. Let

f(n) =

{

2 · n+ 1 if n ∈ K

4 otherwise

If, by contradiction f is recursive, so would be the set A = {n | f(n) =
4}, since a verifier VA(n) can be built by simply computing f(n)
(which is feasible since f ∈ R), and then comparing the result
with 4.

Then, we note that f(n) = 4 is actually equivalent to n 6∈ K.
Indeed, if n 6∈ K, we have f(n) = 4 by definition of f . Otherwise,
if n ∈ K, we have f(n) = 2 · n+ 1 which is odd, hence not equal
to 4.

Therefore, A = K̄, which we know to be non recursive. This is a
contradiction, hence f 6∈ R.

Example 290. Let

f(n) =

{

2 · n+ 1 if φn(3) = 5

4 otherwise

We can prove f 6∈ R as in the previous example. Here, set A =
{n | f(n) = 4} = {n | φn(3) = 5} can be proved to be non
recursive by Rice.

– Proving that if, by contradiction, we had f ∈ R, we also would
have some other function g ∈ R, which is however known to be
non recursive.

Example 291. f(n) = χK(n) + 1 is not recursive. This is be-
cause, otherwise, we would have that g(n) = f(n)− 1 is recursive
because it is a composition of recursive functions (subtraction,
constant 1). However, g(n) = χK(n) is known to be non recur-
sive — contradiction.

• Use some diagonalization argument (usually, this is hard to do). Ex-
ample: see Theorem 37.

Pitfall. We can not use Lemma 222 to justify “f 6∈ R”. Just because
the hypotheses of that Lemma do not hold, we can not conclude that the
thesis does not hold!
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5.1.3 Justifying A ∈ R

Proving A ∈ R may be done . . .

• . . . by proving χA ∈ R (typically not the most convenient way).

• . . . by providing a verifier program VA(n) (in pseudo-code) and proving
that it indeed returns “true” when n ∈ A and “false” otherwise. Note
that VA must take exactly one input parameter n, and must halt on
every value of n.

• . . . by proving A to be λ-definable, doing as above and writing VB in
the λ-calculus.

• . . . by proving A to be a finite set, or by proving Ā to be a finite set.

• . . . by proving A ≤m B for some recursive set B (typically not the
most convenient way).

Example 292. Let A = {n | ∃m. m2 = n}. We can prove A ∈ R by
defining VA(n) in pseudo-code as follows:

procedure VA(n) :
for m := 0 to n do

if m ∗m = n then return true;
return false

The code above works by comparing n to m2 for m between 0 and n.

• If n ∈ A, then n = m2 for some n. This also implies m ≤ n. Hence,
the above loop will find the correct m at the m-th iteration and return
“true”.

• If n 6∈ A, then n 6= m2 for all n. In this case, the loop above will not
find any m. The loop will exit, and VA will return “false” in the last
line.

In a nutshell, the above code works because there’s no need to try values
of m larger than n.

Alternatively, one could use the λ-calculus. Pseudo-code is usually clearer.

VA = λn. ΘG pp0qq
G = λgm. Eq n (Mul m m) T (Lt n m F (g (Succ m)))

Another variant:
VA = λn. Succ n G pp0qq
G = (as above)
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Pitfall. In the example above, it would be wrong to define a two-inputs
procedure:

procedure VA(n,m) :
if m ∗m = n then return true else return false

The above verifies the binary predicate p2(n,m) =“n = m2”, not the set A,
or equivalently the unary predicate p1(n) =“∃m. n = m2”. These are very
different predicates. For instance,

q2(n,m) = “φn(n) halts in m steps”

is a recursive predicate, while

q1(n) = “∃m. φn(n) halts in m steps”

is not recursive, since it is the predicate which defines the Kleene’s set K.

5.1.4 Justifying A 6∈ R

Proving A 6∈ R may be done . . .

• . . . by Rice.

• . . . by proving B ≤m A for some set B and then proving B 6∈ R.

• . . . by contradiction, arguing that A ∈ R would be impossible.

• . . . by diagonalization (typically hard)

5.1.5 Justifying A ∈ RE

Proving A ∈ RE may be done . . .

• . . . by proving χ̃A ∈ R (typically not the most convenient way).

• . . . by providing a semi-verifier program SA(n) (in pseudo-code) and
proving that it indeed halts when n ∈ A and loops forever otherwise.

• . . . as above, but writing SB in the λ-calculus.

• . . . by proving A to be recursive.

• . . . by proving n ∈ A to be equivalent to ∃m. property(n,m) where
property is RE . In more informal terms, “an existential quantification
of a RE property is still RE”.

• . . . by proving A ≤m B for some B ∈ RE (typically not the most
convenient way).
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5.1.6 Justifying A 6∈ RE

Proving A 6∈ RE may be done . . .

• . . . by Rice-Shapiro (either direction).

• . . . by proving B ≤m A for some set B and then proving B 6∈ RE .

• . . . by proving A 6∈ R and Ā ∈ RE .

• . . . by contradiction, arguing that A ∈ RE would be impossible.

5.1.7 More on Verifiers and Semi-verifiers

When defining a verifier VA for a set A (or Vp for some predicate p), always
check that it halts on all inputs. Similarly, when defining a semi-verifier SA

(or Sp) always check that it halts only when the input belongs to A (when the
inputs satisfy the predicate). When writing these, the most common sources
of non-termination are explicitly infinite loops (for i := 0 to ∞· · ·), while
loops, recursion, as well as using a non-recursive guard in an if-then-else (e.g.,
if φi(4) = 1 then · · ·).

Some conditions which commonly appear in programs are shown below,
together with their classification.

condition class

running φi(x) halts RE \ R
· · · with result z RE \ R
running φi(x) halts in exactly k steps R
· · · with result z R
running φi(x) halts in at most k steps R
· · · with result z R
φi(2) = 3 RE \ R
φi(2) = undefined not RE
φi(2) 6= 3 not RE
∃x. φi(x) = 3 RE \ R
∃x. φi(x) = undefined not RE
∀x. φi(x) = 3 not RE
∀x. φi(x) = undefined not RE
φi(4) = φj(2) not RE
φi = φj not RE

Exercise 293. Justify the claims done in the above table.
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5.1.8 Justifying A Being Semantically Closed

This is done by directly applying the definition:

1. Assume some arbitrary i, j ∈ N be given such that φi = φj

2. Assume i ∈ A.

3. Prove that j must belong to A as well.

The last step is typically done by expanding the definition of A, replacing
each occurrence of φi with φj , and then applying the definition of A again.

Example 294. A = {n | φn(1) = 10} is semantically closed. Indeed, given
phii = φj and i ∈ A, we obtain φi(1) = 10, hence φj(1) = 10, which implies
j ∈ A.

Pitfall. Note that the above technique fails in all the cases in which n
occurs anywhere but in an index φn. For instance:

A = {n | φn(0) = n}
B = {n | φn(n) = 0}
C = {n | φn(0) = 0 ∧ n > 400}

All the above sets can not be proved to be semantically closed by just re-
placing φi with φj. If we try, we fail as follows:

i ∈ A =⇒ φi(0) = i =⇒ φj(0) = i 6=⇒ φj(0) = j =⇒ j ∈ A

where the third implication fails because we can not replace the standalone
i with j. Note that the above attempt, does not prove that A is not seman-
tically closed – it is just a failed proof attempt which is inconclusive.

It turns out that the above sets A,B,C are indeed not semantically
closed, but actually proving that is much less trivial. Fortunately, no theo-
rem of ours requires us to prove that a set is not semantically closed, so we
never actually need to do that when applying them.

Note that “replacing φi with φj” also fails in sets such asD = {f(n) | φn(0) =
0}, where f is a function different from the identity.

Exercise 295. Attempt to prove that A,B,C are semantically closed and
observe the outcome.

When we can not prove A to be semantically closed, we must refrain from
using Rice or Rice-Shapiro directly. Typically, we need a different approach,
such as a reduction, instead.
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5.1.9 Rice

We can prove A 6∈ R as follows:

1. First, check that A is semantically closed.

2. Then, show that A 6= ∅ by choosing a natural n and proving n ∈ A.

3. Finally, show that A 6= N by choosing a natural m and proving m 6∈ A.

It is often convenient to pick n and m to be indexes for some recursive
function.

Example 296. Let A = {n | φn(1) = 10}. We prove A 6∈ R by Rice as
follows:

1. A is semantically closed (see Example 294)

2. Take the constant function f(n) = 10. Being constant, it is recursive.
Take any index a such that φa = f . Then a ∈ A, since f(1) = 10,
hence A 6= ∅.

3. Take the constant function g(n) = 3. Being constant, it is recursive.
Take any index b such that φa = g. Then b 6∈ A, since g(1) = 3 6= 10,
hence A 6= N.

We conclude A 6∈ R.

Pitfall. Note that even if one is able to prove that A is not semantically
closed, Rice does not allows one to state that A is recursive.

5.1.10 Rice-Shapiro (⇒)

We can prove A 6∈ RE as follows:

1. First, check that A is semantically closed. After having done that, we
can refer to the associated set of functions FA = {φi | i ∈ A}.

2. Then, choose a function f ∈ FA.

3. Finally, prove that for any finite restriction g of f we have g 6∈ FA.

Pitfall. The last step is the most critical one: we need to prove g 6∈ FA

for all possible g, and not just for one such g. Hence, we must avoid to
choose a specific g, and instead write a general argument. This means that
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by relying only on that 1) g is a restriction of f (in symbols, g ⊆ f), and 2)
the domain of g is finite, we need to prove g 6∈ FA, which is typically done
by exploiting the definition of A.

Pitfall. Note that if f is already a finite domain function, we will not
be able to prove the last hypothesis above. This is because in this case f
is a finite restriction of itself (f ⊆ f is always true), hence a function g
belonging to FA does exist, namely g = f itself!

Example 297. Let A = {n | ∀x ∈ N. φn(x) = 3 · x}.

1. A is semantically closed: indeed, give φi = phij , we have

i ∈ A =⇒ (∀x ∈ N. φi(x) = 3·x) =⇒ (∀x ∈ N. φj(x) = 3·x) =⇒ j ∈ A

Hence, we have FA = {f ∈ R |∀x ∈ N. f(x) = 3 · x}.

2. Take f(n) = 3 · n. It trivially belongs to FA.

3. Take any finite restriction g of f . Since g has finite domain, we must
have g(k) = undefined as soon as k is large enough. Taking any such
k, we have g(k) = undefined 6= 3 · k, hence g 6∈ FA.

We conclude A 6∈ RE.

Final note: in the example above we could alternatively have exploited
the fact that FA = {f}, where f(n) = 3 · n.

Exercise 298. Apply the above technique to prove A = {n | ∀x ∈ N. φn(2 ·
x) = 3} 6∈ RE.

5.1.11 Rice-Shapiro (⇐)

We can prove A 6∈ RE as follows:

1. First, check that A is semantically closed. After having done that, we
can refer to the associated set of functions FA = {φi | i ∈ A}.

2. Then, choose a function g ∈ FA having a finite domain. (Justify why
the domain is finite, and why g ∈ FA)

3. Finally, extend g so to define a recursive function f such that f 6∈ FA.
(Check that f is indeed an extension of g, that it is recursive, and that
it does not belong to FA.)
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Note that unlike for Rice-Shapiro (⇒), here we have to choose both f
and g. To simplify this task, it is best to choose g to be as much “undefined”
as possible, while satisfying the constraint g ∈ FA. E.g., when possible, take
g to be the always undefined function g(n) = undefined for all n, or take
g to be defined only on one or two points. Doing this greatly simplifies the
choice of f , which can then be define freely on all points outside the domain
of g (as long as f is kept recursive). This freedom can then be exploited to
define f outside FA as required.

Example 299. Let A = {n | φn(4) = 5 ∧ φn(6) 6= 7}.

1. A is semantically closed: indeed, given φi = φj , we have

i ∈ A =⇒ (φi(4) = 5∧φi(6) 6= 7) =⇒ (φj(4) = 5∧φj(6) 6= 7) =⇒ j ∈ A

Hence, we have FA = {f ∈ R | f(4) = 5 ∧ f(6) 6= 7}.

2. Take g(n) =

{

5 if n = 4

undefined otherwise
. Then, g is finite since dom(g) =

{4}. It belongs to FA since g(4) = 5 and g(6) = undefined 6= 7.

3. Take f(n) = n + 1 for all n. It is an extension of g, since when
n ∈ dom(g) we have n = 4 hence g(n) = 5 = 4 + 1 = f(n). Moreover,
f is recursive since it is the successor function. Finally, f does not
belong to FA since f(6) = 6+1 = 7, violating the requirement f(6) 6= 7.

We conclude A 6∈ RE.

Exercise 300. Apply the above technique to prove that A = {n | dom(φn) 6=
N} 6∈ RE .

5.1.12 Reductions

Justifying A ≤m B is done as follows:

1. First, we choose h to be a total recursive function (and we justify that
claim).

2. Then, we prove that, given n ∈ A, we have h(n) ∈ B.

3. Finally, we prove that, given n ∈ A, we have h(n) ∈ B.



5.1. IN PRACTICE: COMMON TECHNIQUES RECAP 117

Typically, the non trivial part is finding a function h in the first step
which allows us to prove the other requirements. The next section provides
some suggestions for this.

Alternative approaches to prove A ≤m B include:

• Proving A ≤m C and C ≤m B for some set C.

• When B = K, it suffices to prove A ∈ RE . (Lemma 261)

How to Construct a Reduction Function h

It sometimes helps to inspect B and check against the following special cases:

• If B is a semantically closed set, it is convenient to look for a reduction
function of the following form

h(n) = #(λx. b(n, x))

It is common for b to be defined by cases, as shown below:

h(n) = #

(

λx.

{

f(n, x) if 〈condition on n, x〉

g(n, x) otherwise

)

Then, we prove that b(n, x) is a recursive partial function. From that,
by the s-m-n theorem we get that h is a total (and injective) recursive
function.

Unfortunately, there is no standard recipe for choosing b (or f, g and
the condition). One must try different definitions until one is found to
be working.

Note that x may not appear in the actual definition of b, i.e., b might
be constant with respect to x. Instead, n has to appear there, since h
must return different values according to whether n ∈ A or not.

When A is defined by a property involving non-termination, such as
when A = K̄, it may help picking the condition to be “φn(〈something〉)
halts in ≤ x steps”, or any variant of such.

Pitfall. Do not use other variables than n, x in the body of the λ,
unless you define them separately. E.g., h(n) = #(λx. x+ y) is mean-
ingless unless you state what is the y which occurs in such definition.

Pitfall. When defining b(n, x) by cases as shown above, do not forget
to justify why b is recursive. Often, Lemma 222 suffices.
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• If B is defined as B = {f(m) | property(m)}, it is worth trying h = f .

Pitfall. In this case, we need to be careful when checking that h = f
is a reduction. Note that, for all x we have

x ∈ B ⇐⇒ ∃m. x = f(m) ∧ property(m)

Hence, when checking n ∈ A =⇒ f(n) ∈ B, the thesis “f(n) ∈ B” is
equivalent to ∃m. f(n) = f(m)∧ property(m). To establish the latter,
we can take m = n and just prove property(n), for instance. This
usually poses no problems.

However, when checking n 6∈ A =⇒ f(n) 6∈ B, the thesis “f(n) 6∈
B” is now equivalent to ¬∃m. f(n) = f(m) ∧ property(m), which is
equivalent to ∀m. f(n) = f(m) =⇒ ¬property(m). To get that, it is
not enough to just prove ¬property(n), since other choices of m may
exist such that f(n) = f(m), and those have to be checked as well.
When f is injective, instead, then no other m can exist but n, so in
this case checking ¬property(n) is indeed enough.

Summary. Always check whether f is injective before proving “f(n) 6∈
B”, and act accordingly.

Pitfall. Recall that h has to be total. There should be no “undefined”
in its definition, except possibly inside a #(λx. · · · ).

Example 301. Let A = K and B = {n | φn(4) = 5}. We prove A ≤m B
as follows. (Note in passing that B is semantically closed)

1. Take

h(n) = #

(

λx.

{

5 if n ∈ K

undefined otherwise

)

The body of the λx is indeed partial recursive, since the condition “n ∈
K” is RE , the first case “5” is constant hence recursive, and the second
case is “undefined”, so Lemma 240 applies. By the s-m-n theorem, h
is total and recursive.

2. Given n ∈ A = K, we have that φh(n)(x) =

{

5 if n ∈ K

undefined otherwise
=

5 for all x. In particular, φh(n)(4) = 5, hence h(n) ∈ B.

3. Given n 6∈ A = K, we have that φh(n)(x) =

{

5 if n ∈ K

undefined otherwise
=

undefined for all x. In particular, φh(n)(4) = undefined 6= 5, hence
h(n) 6∈ B.
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Example 302. Let A = {n | dom(φn) = {1, 2, 3}} and B = {2 · n +
1 | dom(φn) = {1, 2, 3}}. We prove A ≤m B as follows.

1. Take h(n) = 2 · n + 1. This is obviously total, and it is recursive
since it is a composition of recursive functions (sum, multiplication,
constants).

2. If n ∈ A, then dom(φn) = {1, 2, 3}, which immediately implies h(n) =
2 · n+ 1 ∈ B.

3. If n 6∈ A, then dom(φn) 6= {1, 2, 3}. Since h is a strictly increasing
function, h is injective. Hence, the above implies h(n) = 2 ·n+1 6∈ B.

Final note. Note that since A 6∈ R (by Rice), the above establishes B 6∈ R
as well. Indeed, B is not even RE, as we can show by applying Rice-Shapiro
(⇐) to A.

Exercise 303. Prove that K̄ ≤m B = {n | dom(φn) = N} using the reduc-
tion

h(n) = #

(

λx.

{

42 if φn(n) does not halt within x steps

undefined otherwise

)

Exercise 304. Prove that A = {n | ∀x. φn(x) = 7} ≤m B = {n | dom(φn) =
N} using the reduction

h(n) = #

(

λx.

{

42 if φn(x) = 7

undefined otherwise

)

Exercise 305. Prove that A = K ≤m B = {n | φn(0) = 0} using the
reduction

h(n) = # (λx. 0 · φn(n))
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Appendix A

Solutions

Solution 306.

encode−1
⊎ (n) = 〈n mod 2,

⌊n

2

⌋

〉

Solution 307. A possible solution is sketched below:

• A context C[•] is a λ-term with a single free occurrence of a variable,
denoted as •.

• Prove that C[•] →∗
η • if and only if C is produced by the following

grammar:

C ::= • | λx.C[•] C[x]

• Prove that, whenever C[•]→∗
η •, we have C[λx. M ] N →∗

βη M{N/x}.

• Prove that, if M →∗
η→β N then M →∗

β→
∗
η N .

• Conclude that, if M →∗
η→

∗
β N then M →∗

β→
∗
η N .

Solution 308. By contradiction, assume T =βη F. Clearly, T and F are
βη-normal forms. By Th. 79, we have T→∗

βη F. Since T is a normal form,
this is not possible unless T =α F, which is clearly not the case
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Solution 309. Here are many useful combinators:

And = λxy. xyF

Or = λxy. xTy

Not = λx. xFT

Leq = λnm. IsZero (mPredn)

Eq = λnm.And(Leqnm)(Leqmn)

Lt = λnm.Leq(Succ n)m

Add = λnm.nSuccm

Mul = λnm.n(Addm)pp0qq

Even = λn. nNotT

LimMinF Zppnqq returns the smallest m ∈ {0..n} such that Fppmqq = T. If
no such m exists, it returns Z. Note that F must return only T or F for
this to work.

LimMin = λfzn.Succn (λgx.fxx(g(Succ x)))(Kz) pp0qq

Any = λfn.Leq(LimMin f (Succ n)n)n

All = λfn.Not(Any(◦Not f)n)

The following is integer division: Divppnqqppmqq = pp⌊n/m⌋qq

Div = λnm.LimMin (λx.Ltn(Mul(Succx)m))Ωn

The following is the λ-term defining the pair function. The definition is
straightforward from the formula for pair.

Pair = λnm.Add(Div (Mul(Addnm)(Succ (Addnm)))pp2qq)n

We compute the inverse of c = pair(n,m) by “brute force”. We merely try all
the possible values of n,m, encode them, and stop when we find the unique
n,m pair which has c as its encoding. By Lemma 30, we only need to search
for n,m ∈ {0..c}, so we limit our search to that square.

Proj1 = λc.LimMin (λn.Any(λm.Eq c (Pair nm))c)Ω c

Proj2 = λc.LimMin (λm.Any(λn.Eq c (Pair nm))c)Ω c

InL = λn.Mul pp2qqn

InR = λn.Succ(Mul pp2qqn)

Case = λnlr.Evenn (l(Div n pp2qq)) (r(Div n pp2qq))
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Above, when n is odd, we compute (n − 1)/2 by just using Divppnqqpp2qq =
pp⌊n/2⌋qq = pp(n− 1)/2qq. We could also apply Pred to n, leading to the same
result.

Solution 310. We want a Θ such that ΘF =βη F (ΘF ). We first write
that requirement as Θ =βη λF.F (ΘF ). Then, we abstract the Θ recursive
call, obtaining

M = λw. λF. F (wF )

Then we duplicate the w inside

M = λw. λF. F (wwF )

And finally, we let Θ = MM , that is

Θ = (λw. λF. F (wwF ))(λw. λF. F (wwF ))

We are done. Let us check Θ is really a fixed point combinator.

ΘF = (λw. λF. F (wwF ))(λw. λF. F (wwF ))F

=
(

λF.F
(

(λw. λF. F (wwF ))(λw. λF. F (wwF ))F
)

)

F

=
(

λF.F (ΘF )
)

F

= F (ΘF )

The Θ above was given by Turing. Church discovered this other fixed
point combinator

Y = λF.MM where M = λw.F (ww)

There other ones, of course. The $ below is a peculiar one given by Klop.

$ = ££££££££££££££££££££££££££

£ = λabcdefghijklmnopqstuvwxyzr. r(thisisafixedpointcombinator)

Solution 311.

Var = InL
App = λm n. InR (InL (Pair m n))
Lam = λi m. InR (InR (Pair i m))
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Solution 312.
Sd = λn v a l. Case n v O
O = λm. Case m A L
A = λx. a (Proj1 x) (Proj2 x)
L = λx. l (Proj1 x) (Proj2 x)

Solution 313.

Length = Θ(λgl.Eq pp0qq (Fst l)pp0qq (Succ(g(Snd l))))
Merge = Θ(λgab.Eq pp0qq (Fst a) b (Eq pp0qq (Fst b) aA))
A = Leq (Fst a) (Fst b)B C
B = Cons (Fst a) (g (Snd a) b)
C = Cons (Fst b) (g a (Snd b))
Split = Θ(λga.Eq pp0qqA1 (Cons a a) (Cons (ConsA1 B2)B1))
B1 = Fst (g Ar)
B2 = Snd (g Ar)
A1 = Fst a
Ar = Snd a
MergeSort = Θ(λga.Eq pp0qqA1 a (Eq pp0qqA2 aM))
M = Merge (g (Fst (Split a))) (g (Snd (Split a)))
A1 = Fst a
A2 = Fst (Snd a)

(Note that the complexity of the above MergeSort is far from the expected
O(n · log n) . . . )

Solution 314. Let F,G be λ-defining partial functions f, g, respectively.
Then,

H = λx. J F (G x)
J = G x (K I) I

The above H λ-defines f ◦ g. Indeed:

• If g(n) is not defined, then J = G ppnqq (K I) I is unsolvable because
G ppnqq is such. Hence, H ppnqq =βη J · · · is unsolvable, as it should
since (f ◦ g)(n) is undefined.

• If g(n) is defined as, say y, then J = G ppnqq (K I) I =βη ppyqq (K I) I =βη

I , hence H ppnqq =βη J F (G ppnqq) =βη F (G ppnqq) =βη F ppyqq. The
latter is unsolvable whenever f(y) is undefined, or has a numeral βη-
normal form. Both these cases agree with the definedness of (f ◦g)(n).

The λ-term J above is called a “jamming factor”: its purpose is to force the
evaluation of Gppnqq before calling F . In this way, composition always works
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as expected. For instance, if F = λx. pp5qq and G = Ω, näıve composition
yields the wrong result F (Gpp7qq) =βη pp5qq, while J F (Gpp7qq) =βη pp5qq
is unsolvable as it should be, since in this case g is the always undefined
function.

Solution 315. • GpMq = pMMq

G = λm.Appmm

• GpMNq = pNMq

G = λx. Sd x Ω (λmn. App n m) Ω

• Gpλx.Mq = pMq

G = λx. Sd x Ω Ω (λim. m)

• Gpλx. λy.Mq = pλy. λx.Mq

G = λx. Sd x Ω Ω (λim. Sd m Ω Ω (λjn. Lam j (Lam i n)))

• GpIMq = pMq and GpKMq = pIq

G = λx. Sd x Ω (λnm. Eq n pIq m pIq) Ω

• Gpλxi.Mq = pλxi+1.Mq

G = λx. Sd x Ω Ω (λin. Lam (Succ i) n)

• GpMq = pNq where N is obtained from M replacing every (bound or
free) variable xi with xi+1

G = Θ(λgx. Sd x Succ (λnm. App (gn) (gm)) (λin. Lam (Succ i) (gn)))

• GpMq = pM{I/x0}q (this does not require α-conversion)

G = Θ(λgx. Sd x V A L)
V = λi. IsZero i pIq x
A = λnm. App (gn) (gm)
L = λin. IsZero i x (Lam i (gn))
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Solution 316. The following program performs substitution while α con-
verting variables.

Subst = Θ(λs i m n. Sd n V A L)
V = λj. Eq j i m n
A = λm′ n′. App (s i m m′) (s i m n′)
L = λj n′. Eq i j n (Lam j′ (s i m (s j (Var j′) n′)))
j′ = Succ(Add m n)

Above j′ is taken to be #M +#N +1, which is larger than the index of any
variable occurring in M or N . This ensures that it is fresh, i.e. not free in
any of those λ-terms. A “minimum” fresh index could instead be computed
with a little more effort.

Note that for this whole program we do not really need the unbounded
recursion provided by Θ: it suffices to go only as deep as the λ-term #N
itself. Since the depth is bounded by #N + 1, we could have exploited that
instead.

Solution 317. The following program follows the algorithm for the leftmost-
outermost strategy of Def. 65. The “shallow decoder” Sd of Ex. 118 is also
exploited.

Beta = λn. Fst (Be n)
IsBetaNF = λn. Snd (Be n)
Be = Θ(λb n. Sd n V A L)
V = λi. Cons n T
L = λi m. Snd (b m) (Cons n T) (Cons (Lam i (Fst (b m))) F)
A = λm o. Sd m (K M) (K (K M)) L′

L′ = λi m′. Cons (Subst i o m′) F

M = Snd (b m)
(

Snd (b o) (Cons n T) (Cons (App m (Fst (b o))) F)
)

(

Cons (App (Fst (b m)) o) F
)

Note that for this task we do not really need unbounded recursion: it suffices
to go only as deep as the λ-term itself.

Solution 318.

IsNumeral = λn. Sd n (K F) (K(K F)) L1

L1 = λs m. Sd m (K F) (K(K F)) L2

L2 = λz o. And (Neq s z) (C o)

C = Θ

(

λc t. Sd t (Eq z)
(

λm′ n′. And (Eq m′ (Var s)) (c n′)
)

(K(K F))

)
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Note that for this task we do not really need unbounded recursion: it suffices
to go only as deep as the λ-term itself.

Solution 319.

Extract = λn. Sd n (K Ω) (K(K Ω)) L1

L1 = λs m. Sd m (K Ω) (K(K Ω)) L2

L2 = λz o. Neq s z (C o) Ω
C = Θ(λc t. Sd t V A L)
V = λv. Eq z v pp0qq Ω

A =
(

λm′ n′. Eq m′ (Var s) (Succ (c n′))Ω
)

L = K (K Ω)

Note that for this task we do not really need unbounded recursion: it suffices
to go only as deep as the λ-term itself.

Solution 320. A possible solution is:

Eval = Θ
(

λe n. IsBetaNF n (Extract (Eta n))(e (Beta n))
)

One can then carefully check that indeed EvalpMq performs the required
task. When M has a βη-normal form N , that is computed from M by
repeated leftmost-outermost β-reductions, followed by as many steps of η as
required. If N is a numeral, Extract collects it. If N is not a numeral,
Extract returns Ω, which is unsolvable. Finally, if M has no βη-normal
form at all, then a leftmost-outermost execution of EvalpMq indeed gets
stuck in an infinite recursion, since IsBetaNF n will always return F.
This can not be unstuck by providing further arguments, hence EvalpMq is
unsolvable in this case.

Solution 321. Let A be a finite set with n elements: A = {a1, . . . , an}. A
verifier for A is then

VA = λx. Or (Eq x ppa1qq) (
Or (Eq x ppa2qq) (
. . .
Or (Eq x ppanqq) (
F ) · · · ))

Solution 322. By contradiction, suppose K0
λ is λ-defined by F . Then, we

consider
G = λx. F (App pKq (App x(Numx)))
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We have that GpMq = FpK(MpMq)q. The latter evaluates to T of F
depending on whether K(MpMq)pp0qq = MpMq has a normal form. So G
actually λ-defines Kλ, which is a contradiction.

Solution 323. Take Pad = λn.App pIqn. Then, PadpMq = pIMq, and
we have

#(IM) = 1 + 2 · (2 · ( (#I+#M)(#I+#M+1)
2 +#I)) ≥

≥ 1 + 4 · #M
2 > #M

Solution 324. We have K̄ 6≤m K because otherwise we would have K̄ ∈ RE
by Lemma 257.

Also, we have K 6≤m K̄ because otherwise by Lemma 256 we would have
N \ K ≤m N \ K̄ which is K̄ 6≤m K.

Solution 325. By Lemma 241(3), it is enough to prove that

{n | ∃l,m. pair(n, pair(l,m)) ∈ B} = {n | ∃o. pair(n, o) ∈ B}

which immediately follows from pair being a bijection. More in detail, the
⊆ direction follows from taking o = pair(l,m), while the ⊇ direction follows
taking l = proj1(o) and m = proj2(o).

Solution 326. The⇒ direction follows from Lemma 241(3), which provides
a set B ∈ R ⊆ RE.

For the ⇐ direction, let B ∈ RE such that

A = {n | ∃m. pair(n,m) ∈ B}

By Lemma 241(3) applied to B, we have that for some C ∈ R:

B = {x | ∃y. pair(x, y) ∈ C}

Hence,
A = {n | ∃m, y. pair(pair(n,m), y) ∈ C}

Now, we define a “rearranged” variant of C

D = {pair(n, pair(m, y)) | pair(pair(n,m), y) ∈ C}

which is recursive, since a verifier VD can be defined exploiting VC . Hence,

A = {n | ∃m, y. pair(n, pair(m, y)) ∈ D}

which is RE by Ex. 242.



A.1. MORE PROOFS 129

Solution 327. Let A = {i | φi(3) = φi(5) = 4}. We have that

A =







i

∣

∣

∣

∣

∣

∣

∃k1, k2.
running φi(3) halts within k1 steps with output 4

∧
running φi(5) halts within k2 steps with output 4







Therefore,
A = {i | ∃k1, k2. pair(i, pair(k1, k2)) ∈ B}

where

B =







pair(i, pair(k1, k2))

∣

∣

∣

∣

∣

∣

running φi(3) halts within k1 steps with output 4
∧

running φi(5) halts within k2 steps with output 4







which is recursive. Indeed a verifier VB(n) can be implemented by first “split-
ting” n into i, k1, k2 via the usual proj1, proj2 functions, and then checking
that program i indeed stops with output 4 on both inputs 3 and 5. For this
last part, we can exploit a step-by-step interpreter.

We conclude that A ∈ RE by Ex. 243.

A.1 More Proofs

Here we establish Church-Rosser for →β.

Definition 328. We define →p as a “parallel” variant of →β. Its inductive
definition comprises the “up-to-α” rule and the following ones.

M →p M
(A.1)

M →p M
′ N →p N

′

MN →p M ′N ′
(A.2)

M →p M
′

λx. M →p λx. M ′
(A.3)

M →p M
′ N →p N

′

(λx. M)N →p M ′{N ′/x}
(A.4)

Lemma 329. While →β and →p are different relations, they have the same
transitive reflexive closure, i.e. →∗

β =→∗
p.
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Proof. By simple induction.

Lemma 330. The (one-step, parallel) relation →p is Church-Rosser:

∀M M1 M2. M →p M1 ∧M →p M2 =⇒ ∃N.M1 →p N ∧M2 →p N

Proof. (Sketch) By induction and case analysis. Checking all the pairs of
rules (A.1),. . . ,(A.4) suffices.

Lemma 331. The (many-steps, parallel) relation →∗
p is Church-Rosser:

∀M M1 M2. M →
∗
p M1 ∧M →∗

p M2 =⇒ ∃N.M1 →
∗
p N ∧M2 →

∗
p N

Proof. By Lemma 330 and induction on the number of steps.
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