Year 2013/14 - Number 10

December 19, 2013

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/zunino/teaching/computability/assignments.

Preliminaries 1. Recall that for $a, b \in \mathbb{N}, \min \{a, b\}$ is the least element between a and b. Recall also that a set $C \subseteq \mathbb{N}$ is called upward closed iff $\forall x \in C . \forall y \in \mathbb{N}(y>x \Rightarrow y \in C)$.
Question 2. Let $g, h \in \mathcal{R}$, and define

$$
f(x)=\left\{\begin{array}{cc}
g(x) & \text { whenever } x \in \mathcal{K} \\
\min \{g(x), h(x)\}+1 & \text { otherwise }
\end{array}\right.
$$

Is it possible to find g and h such that $f \in \mathcal{R}$ and total? If it is so, provide g, h, and the proof that $f \in \mathcal{R}$ and total; otherwise, provide a proof of why $f \notin \mathcal{R}$ or not total regardless of the choice of g and h.

Answer 2.1. We claim that f cannot be recursive and total regardless of the choice of g and h. By contradiction, suppose $f \in \mathcal{R}$ total. Consider the set $A=\{n \mid f(n)=\min \{g(n), h(n)\}+1\}$ and notice that f is total iff g is total, since $f(n)$ depends on $g(n)$ for all $n \in \mathbb{N}$. We claim that $A \in \mathcal{R}$, since we are able to build a verifier for A :
$V_{A}(n): \quad$ compute $f(n)=x ; \quad$ compute $g(n)=y ; \quad$ if $x=$
y then return $0 \quad$ else return 1
(Pay attention: it is always possible to compute $f(n)$ and $g(n)$ since they are recursive total functions. Furthermore $f(n)=g(n)$ iff $n \in \mathcal{K}$ because if $n \notin \mathcal{K}$ then $f(n)=g(n)+1$ or $f(n)=h(n)+1$.)
We conclude that $A \in \mathcal{R}$. Since $A=\{n \mid n \notin \mathcal{K}\}=\overline{\mathcal{K}}$, it follows that it should be $\overline{\mathcal{K}} \in \mathcal{R}$, which is impossible because we have already proved that this set is not recursive. We reached a contradiction, therefore $f \notin \mathcal{R}$ total. It is possible to find g and h such that $f \in \mathcal{R}$ or such that f is total:

- $f \in \mathcal{R}$: pick $g \in \mathcal{R}$ total and $h(x)=$ undefined for all $x \in \mathbb{N}$. Then

$$
f(x)=\left\{\begin{array}{cr}
g(x) & \text { whenever } x \in \mathcal{K} \\
\text { undefined } & \text { otherwise }
\end{array}\right.
$$

By the if-then-else lemma on $\mathcal{R E}$ sets $f \in \mathcal{R}$ (g is recursive, unde fined is recursive and $\mathcal{K} \in \mathcal{R E}$, therefore I can apply the lemma).

- f total: pick $g, h \in \mathcal{R}$ total.

Question 3. Prove or disprove: there exists an upward closed set $C \notin \mathcal{R E}$.
Answer 3.1. Let C be a non-empty upward closed set $(C=\emptyset$ is clearly a $\mathcal{R E}$ set). Consider the function

$$
f(n)=\left\{\begin{array}{cc}
1 & \text { if } n \geq k \\
\text { undefined } & \text { otherwise }
\end{array}\right.
$$

We claim that f is a characteristic function of C, since we have already proved that a upward closed set C can be seen as $C=\{n \mid n \geq k\}$ for some $k \in \mathbb{N}$. By the if-then-else lemma on $\mathcal{R E}$ sets, $f \in \mathcal{R} \Rightarrow C \in \mathcal{R E}$. We conclude that $\nexists C$ upward set such that $C \notin \mathcal{R E}$.

Question 4. Prove or disprove: the function f defined below belongs to \mathcal{R}.

$$
f(n)=\left\{\begin{array}{cc}
\left(\varphi_{n}(n)\right)^{n} & \text { whenever } \varphi_{n}(n) \text { is defined } \\
77 & \text { otherwise }
\end{array}\right.
$$

Answer 4.1. We claim that $f \notin \mathcal{R}$. By contradiction, suppose that $f \in \mathcal{R}$. Therefore the set $A=\{n \mid f(n)=77\} \in \mathcal{R}$, since we are able to build a verifier for A :
$V_{A}(n): \quad$ compute $f(n)=z \quad$ if $z=77$ then return 1
(Pay attention: it is always possible to compute $f(n)$ because $f \in \mathcal{R}$ total.) Notice that $A=\left\{n \mid \varphi_{n}(n)\right.$ undefined $\}=\overline{\mathcal{K}}$. Since $A \in \mathcal{R}$, it should be $\overline{\mathcal{K}} \in \mathcal{R} \rightsquigarrow$ CONTRADICTION! We already know that $\overline{\mathcal{K}} \notin \mathcal{R}$. We conclude that $f \notin \mathcal{R}$.

