Year 2013/14 - Number 10

December 19, 2013

Please keep this file anonymous: do not write your name inside this file. More information about assignments at

http://disi.unitn.it/zunino/teaching/computability/assignments.

Preliminaries 1. Recall that for $a, b \in \mathbb{N}$, $min\{a, b\}$ is the least element between a and b. Recall also that a set $C \subseteq \mathbb{N}$ is called *upward closed* iff $\forall x \in C. \forall y \in \mathbb{N}(y > x \Rightarrow y \in C).$

Question 2. Let $g, h \in \mathcal{R}$, and define

$$f(x) = \begin{cases} g(x) & \text{whenever } x \in \mathcal{K} \\ \min\{g(x), h(x)\} + 1 & \text{otherwise} \end{cases}$$

Is it possible to find g and h such that $f \in \mathcal{R}$ and total? If it is so, provide g, h, and the proof that $f \in \mathcal{R}$ and total; otherwise, provide a proof of why $f \notin \mathcal{R}$ or not total regardless of the choice of g and h.

Answer 2.1. We claim that f cannot be recursive and total regardless of the choice of g and h. By contradiction, suppose $f \in \mathcal{R}$ total. Consider the set $A = \{n | f(n) = min\{g(n), h(n)\} + 1\}$ and notice that f is total iff g is total, since f(n) depends on g(n) for all $n \in \mathbb{N}$. We claim that $A \in \mathcal{R}$, since we are able to build a verifier for A:

$$V_A(n)$$
: compute $f(n) = x$; compute $g(n) = y$; if $x = y$ then return 0 else return 1

(Pay attention: it is always possible to compute f(n) and g(n) since they are recursive total functions. Furthermore f(n) = g(n) iff $n \in \mathcal{K}$ because if $n \notin \mathcal{K}$ then f(n) = g(n) + 1 or f(n) = h(n) + 1.)

We conclude that $A \in \mathcal{R}$. Since $A = \{n | n \notin \mathcal{K}\} = \overline{\mathcal{K}}$, it follows that it should be $\overline{\mathcal{K}} \in \mathcal{R}$, which is impossible because we have already proved that this set is not recursive. We reached a contradiction, therefore $f \notin \mathcal{R}$ total. It is possible to find g and h such that $f \in \mathcal{R}$ or such that f is total:

• $f \in \mathcal{R}$: pick $g \in \mathcal{R}$ total and h(x) = undefined for all $x \in \mathbb{N}$. Then

$$f(x) = \begin{cases} g(x) & \text{whenever } x \in \mathcal{K} \\ undefined & \text{otherwise} \end{cases}$$

By the if-then-else lemma on \mathcal{RE} sets $f \in \mathcal{R}$ (g is recursive, undefined is recursive and $\mathcal{K} \in \mathcal{RE}$, therefore I can apply the lemma).

• f total: pick $g, h \in \mathcal{R}$ total.

Question 3. Prove or disprove: there exists an upward closed set $C \notin \mathcal{RE}$.

Answer 3.1. Let C be a non-empty upward closed set $(C = \emptyset$ is clearly a \mathcal{RE} set). Consider the function

$$f(n) = \begin{cases} 1 & \text{if } n \ge k \\ undefined & \text{otherwise} \end{cases}$$

We claim that f is a characteristic function of C, since we have already proved that a upward closed set C can be seen as $C = \{n | n \ge k\}$ for some $k \in \mathbb{N}$. By the if-then-else lemma on \mathcal{RE} sets, $f \in \mathcal{R} \Rightarrow C \in \mathcal{RE}$. We conclude that $\nexists C$ upward set such that $C \notin \mathcal{RE}$.

Question 4. Prove or disprove: the function f defined below belongs to \mathcal{R} .

$$f(n) = \begin{cases} (\varphi_n(n))^n \text{ whenever } \varphi_n(n) \text{ is defined} \\ 77 \text{ otherwise} \end{cases}$$

Answer 4.1. We claim that $f \notin \mathcal{R}$. By contradiction, suppose that $f \in \mathcal{R}$. Therefore the set $A = \{n | f(n) = 77\} \in \mathcal{R}$, since we are able to build a verifier for A:

 $V_A(n)$: compute f(n) = z if z = 77 then return 1 (Pay attention: it is always possible to compute f(n) because $f \in \mathcal{R}$ total.) Notice that $A = \{n | \varphi_n(n) \text{ undefined}\} = \overline{\mathcal{K}}$. Since $A \in \mathcal{R}$, it should be $\overline{\mathcal{K}} \in \mathcal{R} \rightsquigarrow \text{CONTRADICTION}!$ We already know that $\overline{\mathcal{K}} \notin \mathcal{R}$. We conclude that $f \notin \mathcal{R}$. else retu