Computability Assignment Year 2013/14-Number 9

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Definition

If \sim is an equivalence relation over a set A, a set $B \subseteq A$ is closed under \sim if $\forall x \in B \forall y \in A(y \sim x \Rightarrow y \in B)$.

2 Question

Let \sim be the relation over \mathbb{N} defined as $x \sim y$ if $|x-y|$ is a multiple of 3 . Show that \sim is an equivalence relation and determine all sets of natural numbers closed under \sim.

Hint 1: there is only a finite number of such sets.
Hint 2: take a look at question 3 below.

2.1 Answer

In order to show that \sim is an equivalence relation, we have to check that the properties of reflexivity, simmetry and transitivity are satisfied:

1. reflexivity: $x \sim x$ if $|x-x|=3 k, k \in \mathbb{N}$, which is true since $0=3 \times 0$.
2. simmetry: if $x \sim y$ then $y \sim x$. But $|x-y|=3 k, k \in \mathbb{N}$, then $|y-x|=$ $3 k, k \in \mathbb{N}$, since $|x-y|=|y-x|$.
3. transitivity: if $x \sim y$ and $y \sim z$ then $x \sim z$. But if $x \sim y$ then $|x-y|=$ $3 k, k \in \mathbb{N}$, if $y \sim z$ then $|y-z|=3 h, h \in \mathbb{N}$. Now, $|x-z|=|(x-y)+(y-z)|$ and we know that $|x-y|$ and $|y-z|$ are multiples of 3 . This means that $x-y= \pm 3 n$, and $y-z= \pm 3 m$, thus $|x-y|=|3(\pm n \pm m)|=3| \pm n \pm m|=$ $3 k, k \in \mathbb{N}$.

There are three equivalence classes of elements of \mathbb{N} : [0], [1], [2]. For $n \in \mathbb{N}$, we have that either $|n-0|=3 m$ for some $m \in \mathbb{N}$, thus $n \in[0]$, or $|n-0| \neq 3 m$ for $m \in \mathbb{N}$, thus we can only have $|n-0|=3 m+1$ or $|n-0|=3 m+2$ (otherwise n would have been a mutiple of 3). In the first case we have that $n=3 m+1$, thus $n-1=3 m$, thus $|n-1|=3 m$, thus $n \in[1]$, in the second case $n=3 m+2$, thus $n-2=3 m$, thus $|n-2|=3 m$, thus $n \in[2]$. From (3.1) we know that a set B of natural numbers is closed under \sim iff it is the (possibly empty) union of equivalence classes of elements of A. The set of such equivalence classes on which the union is computed is a subset of $\{[0],[1],[2]\}$, thus the number of possible sets is finite, and equal to $2^{3}=8$.

3 Question

Let \sim be an equivalence relation over a nonempty set A. Prove that a subset $B \subseteq$ A is closed under \sim if and only if it is a (possibly empty) union of equivalence classes of elements of A (for the definition of equivalence class of an element of A, see point 1 of assignment 8).

3.1 Answer

If $B=\emptyset$, thus the empty union of equivalence classes of elements of A, then the statement is trivially true, because for all the elements of A (which is nonempty), there is no $x \in B$ such that $y \sim x$, thus the implication $y \sim x \Longrightarrow y \in B$ is true because the premise is false, and, on the other hand, if $\forall x \in B \forall y \in A(y \sim x \Rightarrow$ $y \in B$) is verified because $B=\emptyset$, then B can be seen as the empty intersection of equivalence classes of elements of A. If $B \neq \emptyset$, then if $B \subseteq A$ is closed under \sim, then $\forall x \in B . \forall y \in A .(y \sim x \Longrightarrow y \in B)$. By definition of equivalence class, $[x]=\{y \mid y \in A \wedge x \sim y\}$. By contradiction, if we suppose that B is not the union of equivalence classes of elements of A, then there exists at least one element t such that $t \in[x] . x \in B$, but $t \in A \backslash B$. But $t \in[x] \Longrightarrow x \sim t \Longrightarrow t \sim x$, but, since B is closed under \sim, since $\forall x \in B . \forall y \in A .(y \sim x \Longrightarrow y \in B)$, we have that $(t \sim x \wedge t \in A \wedge x \in B) \Longrightarrow t \in B$, a contradiction. On the other hand, if B is the union of equivalence classes of elements of A, then if $x \in B$, then $x \in[h]$ for a certain $h \in A$, and since $[h]=\{y \mid y \in A \wedge h \sim y\}$, all the elements $y \in A$ such that $y \sim h$ (and therefore such that $h \sim y$) also belong to the equivalence class [h], which means that they belong to B, which is therefore closed under \sim. They are all the sets B such that $B=\bigcup_{a \in J} a$ with $J \subseteq\{0,1,2\}$.

