Year 2013/14 - Number 9

December 8, 2013

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/zunino/teaching/computability/assignments.

Definition 1. If \sim is an equivalence relation over a set A, a set $B \subseteq A$ is closed under \sim if $\forall x \in B \forall y \in A(y \sim x \Rightarrow y \in B)$.

Question 2. Let \sim be the relation over \mathbb{N} defined as $x \sim y$ if $|x-y|$ is a multiple of 3 . Show that \sim is an equivalence relation and determine all sets of natural numbers closed under \sim.
Hint 1: there is only a finite number of such sets.
Hint 2: take a lok at question 3 below.
Answer 2.1. Let's prove that \sim is an equivalence relation:

- Reflexivity: $x \sim x \Leftrightarrow|x-x|=3 k$ for some $k \in \mathbb{N}$. The property holds (pick $k=0$), so the relation is reflexive.
- Symmetry: $x \sim y \Rightarrow|x-y|=2 k$ for some $k \in \mathbb{N}$
$\Rightarrow|(-)(y-x)|=3 k \Rightarrow|(-)||y-x|=3 k \Rightarrow|y-x|=3 k \Rightarrow y \sim x$.
- Transitivity: By hypothesis $x \sim y \Rightarrow|x-y|=3 m$ for some $m \in \mathbb{N}$ and $y \sim z \Rightarrow|y-z|=3 n$ for some $n \in \mathbb{N}$. Consider $|x-z| .|x-z|=$ $|(x-y)+(y-z)|$. Since $|x-y|=3 m$, then $(x-y)= \pm 3 m$ and since $|y-z|=3 n$, then $(y-z)= \pm 3 n$. It follows that $|x-z|=| \pm 3 m \pm 3 n|=$ $3| \pm m \pm n|$ where $| \pm m \pm n|=k \in \mathbb{N}$. Since $|x-z|=3 k, x \sim z$.

We want to determine al sets of natural numbers closed under \sim. First of all, we claim that it exists only 3 equivalence classes of elements of \mathbb{N} : [0], [1], [2]. In fact, let $x \in \mathbb{N}$, then we can distinguish two cases:

- $|n-0|=3 k$ for some $k \in \mathbb{N}$: it follows that $n \in[0]$.
- $\forall k \in \mathbb{N},|n-0| \neq 3 k$: it follows that $|n-0|=3 k+l$, for some $k \in \mathbb{N}$ and $l \in\{1,2\}$:
- if $|n-0|=3 k+1$, then $n=3 k+1$, i.e. $n-1=3 k$. Since $m \in[1] \Leftrightarrow|m-1|=3 k$ for some $k \in \mathbb{N}$, then $n \in[1]$.
- if $|n-0|=3 k+2$, then $n=3 k+2$, i.e. $n-2=3 k$. Since $m \in[2] \Leftrightarrow|m-2|=3 k$ for some $k \in \mathbb{N}$, then $n \in[2]$.

Recalling the Question $3, B \subseteq \mathbb{N}$ is closed under $\sim \operatorname{iff} B=\bigcap_{j \in J}[j]$ where $J \subseteq \mathbb{N} \Rightarrow B=\bigcap_{j \in J}[j]$ where $J \subseteq\{0,1,2\}$. Since there could be only $2^{|\{0,1,2\}|}=8$ possible sets J, there is only a finite number of such closed sets.

Question 3. Let \sim be an equivalence relation over a nonempty set A. Prove that a subset $B \subseteq A$ is closed under \sim if and only if it is a (possibly empty) union of equivalence classes of elements of A (for the definition of equivalence class of an element of A, see point 1 of assignment 8).

Answer 3.1. We claim that $B \subseteq A$ is closed under $\sim \Leftrightarrow B=\bigcup_{z \in J}[z]$ where $J \subseteq A$.
Clearly the property holds if $B=\emptyset$, therefore suppose $B \neq \emptyset$.

- PROOF \Leftarrow : Let $B=\bigcup_{z \in J}[z]$. Let $x \in B$, then $\exists y \in A$ such that $x \in[y] \subseteq B$. Since $x \sim y$, for all $z \in A$ such that $x \sim z$, it holds $z \sim y$. It follows that $z \in[y] \Rightarrow z \in B$. Therefore B is closed under \sim.
- $\mathrm{PROOF} \Rightarrow$: Let B be closed under \sim. Since $B \subseteq A, \forall x \in B \exists y_{x} \in A$ such that $x \sim y_{x}$ (for example $y_{x}=x$, since \sim is a reflexive relation). It follows that $x \in\left[y_{x}\right]$. Let's define $J=\left\{y_{x} \mid x \in B\right\}$, therefore $B \subseteq$ $\bigcup_{j \in J}[j]$.
We claim that $\bigcup_{j \in J}[j] \subseteq B$: let $z \in[j] \Rightarrow z \sim j$. Since $j \sim x$ for some $x \in B$ (by definition), then $z \sim x . B$ is closed under \sim, therefore $z \in B$.

