Computability Assignment Year 2013/14 - Number 8

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Preliminaries

Recall that an equivalence relation \sim over a set A is a binary relation that satisfies all of the following:

1. $\forall x \in A . x \sim x$ (reflexivity);
2. $\forall x, y \in A . x \sim y \Rightarrow y \sim x$ (symmetry);
3. $\forall x, y, z \in A . x \sim y \wedge y \sim z \Rightarrow x \sim z$ (transitivity) .

If A is a set and \sim is an equivalence relation over A, then for all $x \in A$ one can define the equivalence class of x with respect to \sim, that is the set $[x]=$ $\{y \mid y \in A \wedge x \sim y\}$. We will denote by A / \sim the set of all equivalence classes of elements of A, that is $A / \sim=\{[x] \mid x \in A\}$.

2 Question

Let A be a set and \sim an equivalence relation over A. Show that, for all $x, y \in A$, either $[x]=[y]$ or $[x] \cap[y]=\emptyset$. Hint: remember that, by the law of excluded middle, for any choice of $x, y \in A$, either $x \sim y$ or $x \nsim y$ (where $x \nsim y$ means $\neg(x \sim y))$.

2.1 Answer

By the law of excluded middle, $\forall x, y \in A \Rightarrow x \sim y \vee x \nsim y$:

1. If $x \sim y$, since $[x]=\{y \mid y \in A \wedge x \sim y\}$, then $y \in[x]$. Since \sim is a transitive relation, $\forall z \in A . y \sim z \Rightarrow x \sim z$. It follows that $z \in[x]$. Since $z \in[y]$, then $[y] \subseteq[x]$. With the same trick, we can prove that even $[x] \subseteq[y]$, therefore $[x]=[y]$.
2. If $x \neq y$, since $[x]=\{y \mid y \in A \wedge x \sim y\}$, then $y \notin[x]$. Since \sim is a transitive relation, $x \nsim y \Rightarrow x \nsim z \vee z \nsim y$ for some y. Suppose $z \sim y$, then $x \nsim z$. We can state that $\forall z . z \sim y \Rightarrow z \nsim x \Rightarrow z \notin[x]$, i.e. $\forall z . z \in[y] \Rightarrow z \notin[x]$, therefore $[y] \cap[x] \neq \emptyset$.

3 Question

Let $f \in(\mathbb{N} \rightarrow \mathbb{N})$. For each of the relations below, prove whether it is an equivalence relation over \mathbb{N} :

1. $x \sim y$ if and only if $f(x)=f(y)$;
2. $x \sim y$ if and only if $f(x) \neq f(y)$;
3. $x \sim y$ if and only if $f^{-1}(x) \cap f^{-1}(y) \neq \emptyset$.

3.1 Answer

1.

- Reflexivity: $x \sim x$ iff $f(x)=f(x)$ OK
- Symmetry: $x \sim y \Rightarrow f(x)=f(y) \Rightarrow f(y)=f(x) \Rightarrow y \sim x$ OK
- Transitivity: $x \sim y, y \sim z \Rightarrow f(x)=f(y) \wedge f(y)=f(z) \Rightarrow f(x)=$ $f(z) \Rightarrow x \sim z \mathrm{OK}$

This is an equivalence relation.
2.

- Reflexivity: $x \sim x$ iff $f(x) \neq f(x) \mathrm{NO}$

This isn't an equivalence relation.
3.

- Reflexivity: $x \sim x$ iff $f^{-1}(x) \cap f^{-1}(x) \neq \emptyset$. Since $f^{-1}(x) \cap f^{-1}(x)=$ $f^{-1}(x)$, the property holds iff f is surjective. It follows that, in general, the relation \sim is not a reflexive relation.

Since the relation is not always reflexive, it's not even an equivalence relation.

4 Question

Let $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ be an enumeration for the set of recursive partial functions from \mathbb{N} to \mathbb{N}, and let \sim be the equivalence relation over \mathbb{N} defined as follows: $i \sim j$ if and only if $\varphi_{i}=\varphi_{j}$. Moreover, let $e \in(\mathbb{N} \times \mathbb{N} \rightsquigarrow \mathbb{N})$ the partial function defined as $e(a, b)=\varphi_{a}(b)$.

Prove that, if $i \sim j$, then $\forall b \in \mathbb{N}, e(i, b)=e(j, b)$.

4.1 Answer

$i \sim j \Rightarrow \varphi_{i}=\varphi_{j} \Rightarrow \forall b \in \operatorname{dom}\left(\varphi_{i}\right)=\operatorname{dom}\left(\varphi_{j}\right), \varphi_{i}(b)=\varphi_{j}(b)$. Since $e(a, b)=$ $\varphi_{a}(b), \forall b \in \operatorname{dom}\left(\varphi_{i}\right), e(i, b)=\varphi_{i}(b)=\varphi_{j}(b)=e(j, b)$.
$\forall b . b \notin \operatorname{dom}\left(\varphi_{i}\right) \Rightarrow b \notin \operatorname{dom}\left(\varphi_{j}\right)$. Since $b \notin \operatorname{dom}\left(\varphi_{a}\right) \Rightarrow(a, b) \notin \operatorname{dom}(e)$, $(i, b) \notin \operatorname{dom}(e) \wedge(j, b) \notin \operatorname{dom}(e)$, i.e. $e(i, b)=e(j, b)=$ undefined.

5 Remark

Notice that, by what you have proved in the previous exercise, it can be deduced that one can obtain a well-defined partial function $f \in(\mathbb{N} / \sim \times \mathbb{N} \rightsquigarrow \mathbb{N})$ by posing $f([a], b)=e(a, b)$.

