Computability Assignment Year 2013/14 - Number 8

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Preliminaries

Recall that an equivalence relation \sim over a set A is a binary relation that satisfies all of the following:

- 1. $\forall x \in A. \ x \sim x$ (reflexivity);
- 2. $\forall x, y \in A. \ x \sim y \Rightarrow y \sim x \text{ (symmetry)};$
- 3. $\forall x, y, z \in A. \ x \sim y \land y \sim z \Rightarrow x \sim z$ (transitivity).

If A is a set and \sim is an equivalence relation over A, then for all $x \in A$ one can define the *equivalence class* of x with respect to \sim , that is the set $[x] = \{y|y \in A \land x \sim y\}$. We will denote by A/\sim the set of all equivalence classes of elements of A, that is $A/\sim = \{[x]|x \in A\}$.

2 Question

Let A be a set and \sim an equivalence relation over A. Show that, for all $x, y \in A$, either [x] = [y] or $[x] \cap [y] = \emptyset$. Hint: remember that, by the *law of excluded middle*, for any choice of $x, y \in A$, either $x \sim y$ or $x \not\sim y$ (where $x \not\sim y$ means $\neg(x \sim y)$).

2.1 Answer

By definition, we can say that $[x] = \{z_x | z_x \in A \land x \sim z_x\}$ and $[y] = \{z_y | z_y \in A \land y \sim z_y\}$ with $x, y \in A$. At this point we can have three cases:

1. trivially $x = y \implies [y] = [x];$

- 2. $x \neq y \land y \in [x] \implies x \in [y]$ (because x and y are in symmetric relation) $\implies x \sim y$. Now we can take any $z_x \neq y$: if $x \sim z_x$ and $y \sim x$, then we can apply the transitivity property and finally say that $z_x \sim y$. So, generalizing, we have that $(\forall z_x \in [x] \setminus \{y\}.z_x \sim y) \implies z_x \in [y]$ (and the same reasoning holds $\forall z_y$ wrt. $x) \implies [x] = [y]$.
- 3. $x \neq y \land y \notin [x] \implies x \notin [y] \implies x \nsim y \implies [x] \neq [y]$ by negation of case 2.

3 Question

Let $f \in (\mathbb{N} \to \mathbb{N})$. For each of the relations below, prove whether it is an equivalence relation over \mathbb{N} :

- 1. $x \sim y$ if and only if f(x) = f(y);
- 2. $x \sim y$ if and only if $f(x) \neq f(y)$;
- 3. $x \sim y$ if and only if $f^{-1}(x) \cap f^{-1}(y) \neq \emptyset$.

3.1 Answer

- 1. Yes because all the three basic properties hold. That is:
 - (a) $\forall x \in \mathbb{N}$. f(x) = f(x) (reflexivity);
 - (b) $\forall x, y \in \mathbb{N}$. $f(x) = f(y) \Rightarrow f(y) = f(x)$ (symmetry);
 - (c) $\forall x, y, z \in A$. $f(x) = f(y) \land f(y) = f(z) \Rightarrow f(x) = f(z)$ (transitivity).
- 2. No because both properties (a) and (c) does not hold. In fact, for instance, we could have $f(x) \neq f(y)$ and $f(y) \neq f(z)$ but nothing forces us to do not have f(x) = f(z).
- 3. ...

4 Question

Let $\{\varphi_n\}_{n\in\mathbb{N}}$ be an enumeration for the set of recursive partial functions from \mathbb{N} to \mathbb{N} , and let \sim be the equivalence relation over \mathbb{N} defined as follows: $i \sim j$ if and only if $\varphi_i = \varphi_j$. Moreover, let $e \in (\mathbb{N} \times \mathbb{N} \rightsquigarrow \mathbb{N})$ the partial function defined as $e(a, b) = \varphi_a(b)$.

Prove that, if $i \sim j$, then $\forall b \in \mathbb{N}$, e(i, b) = e(j, b).

4.1 Answer

An immediate reasoning can simply be the following: $i \sim j \implies \varphi_i = \varphi_j \implies \forall x \in \mathbb{N}. \varphi_i(x) = \varphi_j(x) \implies \forall x \in \mathbb{N}. e(i, x) = e(j, x).$

5 Remark

Notice that, by what you have proved in the previous exercise, it can be deduced that one can obtain a well-defined partial function $f \in (\mathbb{N}/\sim \times \mathbb{N} \rightsquigarrow \mathbb{N})$ by posing f([a], b) = e(a, b).