Computability Assignment Year 2013/14 - Number 8

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Preliminaries

Recall that an equivalence relation \sim over a set A is a binary relation that satisfies all of the following:

1. $\forall x \in A . x \sim x$ (reflexivity);
2. $\forall x, y \in A . x \sim y \Rightarrow y \sim x$ (symmetry);
3. $\forall x, y, z \in A . x \sim y \wedge y \sim z \Rightarrow x \sim z$ (transitivity).

If A is a set and \sim is an equivalence relation over A, then for all $x \in A$ one can define the equivalence class of x with respect to \sim, that is the set $[x]=$ $\{y \mid y \in A \wedge x \sim y\}$. We will denote by A / \sim the set of all equivalence classes of elements of A, that is $A / \sim=\{[x] \mid x \in A\}$.

2 Question

Let A be a set and \sim an equivalence relation over A. Show that, for all $x, y \in A$, either $[x]=[y]$ or $[x] \cap[y]=\emptyset$. Hint: remember that, by the law of excluded middle, for any choice of $x, y \in A$, either $x \sim y$ or $x \nsim y$ (where $x \nsim y$ means $\neg(x \sim y))$.

2.1 Answer

By definition, we can say that $[x]=\left\{z_{x} \mid z_{x} \in A \wedge x \sim z_{x}\right\}$ and $[y]=\left\{z_{y} \mid z_{y} \in\right.$ $\left.A \wedge y \sim z_{y}\right\}$ with $x, y \in A$. At this point we can have three cases:

1. trivially $x=y \Longrightarrow[y]=[x]$;
2. $x \neq y \wedge y \in[x] \Longrightarrow x \in[y]$ (because x and y are in symmetric relation) $\Longrightarrow x \sim y$. Now we can take any $z_{x} \neq y:$ if $x \sim z_{x}$ and $y \sim x$, then we can apply the transitivity property and finally say that $z_{x} \sim y$. So, generalizing, we have that $\left(\forall z_{x} \in[x] \backslash\{y\} . z_{x} \sim y\right) \Longrightarrow z_{x} \in[y]$ (and the same reasoning holds $\forall z_{y}$ wrt. $\left.x\right) \Longrightarrow[x]=[y]$.
3. $x \neq y \wedge y \notin[x] \Longrightarrow x \notin[y] \Longrightarrow x \nsim y \Longrightarrow[x] \neq[y]$ by negation of case 2.

3 Question

Let $f \in(\mathbb{N} \rightarrow \mathbb{N})$. For each of the relations below, prove whether it is an equivalence relation over \mathbb{N} :

1. $x \sim y$ if and only if $f(x)=f(y)$;
2. $x \sim y$ if and only if $f(x) \neq f(y)$;
3. $x \sim y$ if and only if $f^{-1}(x) \cap f^{-1}(y) \neq \emptyset$.

3.1 Answer

1. Yes because all the three basic properties hold. That is:
(a) $\forall x \in \mathbb{N} . f(x)=f(x)$ (reflexivity);
(b) $\forall x, y \in \mathbb{N} . f(x)=f(y) \Rightarrow f(y)=f(x)$ (symmetry);
(c) $\forall x, y, z \in A . f(x)=f(y) \wedge f(y)=f(z) \Rightarrow f(x)=f(z)$ (transitivity).
2. No because both properties (a) and (c) does not hold. In fact, for instance, we could have $f(x) \neq f(y)$ and $f(y) \neq f(z)$ but nothing forces us to do not have $f(x)=f(z)$.
3. ...

4 Question

Let $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ be an enumeration for the set of recursive partial functions from \mathbb{N} to \mathbb{N}, and let \sim be the equivalence relation over \mathbb{N} defined as follows: $i \sim j$ if and only if $\varphi_{i}=\varphi_{j}$. Moreover, let $e \in(\mathbb{N} \times \mathbb{N} \rightsquigarrow \mathbb{N})$ the partial function defined as $e(a, b)=\varphi_{a}(b)$.

Prove that, if $i \sim j$, then $\forall b \in \mathbb{N}, e(i, b)=e(j, b)$.

4.1 Answer

An immediate reasoning can simply be the following: $i \sim j \Longrightarrow \varphi_{i}=\varphi_{j} \Longrightarrow$ $\forall x \in \mathbb{N} . \varphi_{i}(x)=\varphi_{j}(x) \Longrightarrow \forall x \in \mathbb{N} . e(i, x)=e(j, x)$.

5 Remark

Notice that, by what you have proved in the previous exercise, it can be deduced that one can obtain a well-defined partial function $f \in(\mathbb{N} / \sim \times \mathbb{N} \rightsquigarrow \mathbb{N})$ by posing $f([a], b)=e(a, b)$.

