Computability Assignment Year 2013/14 - Number 8

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Preliminaries

Recall that an equivalence relation \sim over a set A is a binary relation that satisfies all of the following:

- 1. $\forall x \in A. \ x \sim x$ (reflexivity);
- 2. $\forall x, y \in A. \ x \sim y \Rightarrow y \sim x \text{ (symmetry)};$
- 3. $\forall x, y, z \in A. \ x \sim y \land y \sim z \Rightarrow x \sim z \text{ (transitivity)}.$

If A is a set and \sim is an equivalence relation over A, then for all $x \in A$ one can define the *equivalence class* of x with respect to \sim , that is the set $[x] = \{y|y \in A \land x \sim y\}$. We will denote by A/\sim the set of all equivalence classes of elements of A, that is $A/\sim = \{[x]|x \in A\}$.

2 Question

Let A be a set and \sim an equivalence relation over A. Show that, for all $x, y \in A$, either [x] = [y] or $[x] \cap [y] = \emptyset$. Hint: remember that, by the *law of excluded middle*, for any choice of $x, y \in A$, either $x \sim y$ or $x \not\sim y$ (where $x \not\sim y$ means $\neg(x \sim y)$).

2.1 Answer

By the law of excluded middle, we have two possible cases: $x \sim y$ and $x \nsim y$. In the first case, we have that, $z \in [x]$ implies $z \in A \land x \sim z$. But because by simmetry $y \sim x$, this gives us, by transitivity, that $y \sim z$, which, together with $z \in A$, implies that $z \in [y]$. We can demonstrate with a similar reasoning that $z \in [y] \implies z \in [x]$, and that gives us that [x] = [y], since $\forall z \in A.z \in [x] \iff z \in [y]$. In the second case, we have that if $z \in [x]$, then $z \in A \land x \sim z$. But, then, by contradiction, if $z \in [y]$ we would have that $y \sim z$, which would give us, by simmetry and transitivity, $x \sim y$, contradiction. This means that it has to be $z \in [x] \implies z \notin [y]$. With a similar argument we can demonstrate that $z \in [y] \implies z \notin [x]$ as well, wich means that $x \sim y$ implies $[x] \cap [y] = \emptyset$.

3 Question

Let $f \in (\mathbb{N} \to \mathbb{N})$. For each of the relations below, prove whether it is an equivalence relation over \mathbb{N} :

- 1. $x \sim y$ if and only if f(x) = f(y);
- 2. $x \sim y$ if and only if $f(x) \neq f(y)$;
- 3. $x \sim y$ if and only if $f^{-1}(x) \cap f^{-1}(y) \neq \emptyset$.

3.1 Answer

- 1. Yes, because it satisfies all three properties: reflexivity, because $x \sim x$ iff f(x) = f(x), always true; simmetry, because $x \sim y$ iff f(x) = f(y), but if f(x) = f(y) it is also true that f(y) = f(x), therefore $y \sim x$; transitivity because if $x \sim y$ then f(x) = f(y), and if $y \sim z$ then f(y) = f(z) but then we have f(x) = f(y) = f(z) which gives us $x \sim z$.
- 2. No, because it does not satisfy the reflexive property: $x \sim x \implies f(x) \neq f(x)$, a contradiction.
- 3. Yes, because it satisfies all three properties: reflexivity, because $x \sim x$ iff $f^{-1}(x) \cap f^{-1}(x) \neq \emptyset$, always true because it will always contain at least x; simmetry, because $x \sim y$ iff $f^{-1}(x) \cap f^{-1}(y) \neq \emptyset$, but then $f^{-1}(y) \cap f^{-1}(x) \neq \emptyset$, thus $y \sim x$; transitivity, because $(x \sim y \land y \sim z) \implies x \sim z$ iff $(f^{-1}(x) \cap f^{-1}(y) \neq \emptyset \land f^{-1}(y) \cap f^{-1}(z) \neq \emptyset) \implies f^{-1}(x) \cap f^{-1}(z) \neq \emptyset$, which is true if x = y = z (it's $a \land a \implies a$, with $a = f^{-1}(y) \cap f^{-1}(z) \neq \emptyset$), which we have proven to be always true in the reflexivity case), and otherwise, it remain true since $(f^{-1}(x) \cap f^{-1}(y) \neq \emptyset \land f^{-1}(z) \neq \emptyset)$ is always false if (since two natural numbers cannot have two different images, the only way the intersection of the f^{-1} 's would be nonempty would be if they were the f^{-1} 's of the same element., but we are not in the case in which x = y = z, so at least one has to be different, but then one of the two conditions in the conjunction would be false, thus making the implication true because the premise would be false).

4 Question

Let $\{\varphi_n\}_{n\in\mathbb{N}}$ be an enumeration for the set of recursive partial functions from \mathbb{N} to \mathbb{N} , and let \sim be the equivalence relation over \mathbb{N} defined as follows: $i \sim j$ if and only if $\varphi_i = \varphi_j$. Moreover, let $e \in (\mathbb{N} \times \mathbb{N} \to \mathbb{N})$ the partial function defined as $e(a, b) = \varphi_a(b)$.

Prove that, if $i \sim j$, then $\forall b \in \mathbb{N}, e(i, b) = e(j, b)$.

4.1 Answer

Since $i \sim j \implies \varphi_i = \varphi_j$, we have that $\forall b \in \mathbb{N}.e(i,b) = \varphi_i(b) = \varphi_j(b) = e(j,b)$.

5 Remark

Notice that, by what you have proved in the previous exercise, it can be deduced that one can obtain a well-defined partial function $f \in (\mathbb{N}/\sim \times \mathbb{N} \rightsquigarrow \mathbb{N})$ by posing f([a], b) = e(a, b).