Computability Assignment Year 2013/14-Number 8

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Preliminaries

Recall that an equivalence relation \sim over a set A is a binary relation that satisfies all of the following:

1. $\forall x \in A . x \sim x$ (reflexivity);
2. $\forall x, y \in A . x \sim y \Rightarrow y \sim x$ (symmetry);
3. $\forall x, y, z \in A . x \sim y \wedge y \sim z \Rightarrow x \sim z$ (transitivity) .

If A is a set and \sim is an equivalence relation over A, then for all $x \in A$ one can define the equivalence class of x with respect to \sim, that is the set $[x]=$ $\{y \mid y \in A \wedge x \sim y\}$. We will denote by A / \sim the set of all equivalence classes of elements of A, that is $A / \sim=\{[x] \mid x \in A\}$.

2 Question

Let A be a set and \sim an equivalence relation over A. Show that, for all $x, y \in A$, either $[x]=[y]$ or $[x] \cap[y]=\emptyset$. Hint: remember that, by the law of excluded middle, for any choice of $x, y \in A$, either $x \sim y$ or $x \nsim y$ (where $x \nsim y$ means $\neg(x \sim y))$.

2.1 Answer

By the law of excluded middle, we have two possible cases: $x \sim y$ and $x \nsim y$. In the first case, we have that, $z \in[x]$ implies $z \in A \wedge x \sim z$. But because by simmetry $y \sim x$, this gives us, by transitivity, that $y \sim z$, which, together with
$z \in A$, implies that $z \in[y]$. We can demonstrate with a similar reasoning that $z \in[y] \Longrightarrow z \in[x]$, and that gives us that $[x]=[y]$, since $\forall z \in A . z \in[x] \Longleftrightarrow$ $z \in[y]$. In the second case, we have that if $z \in[x]$, then $z \in A \wedge x \sim z$. But, then, by contradiction, if $z \in[y]$ we would have that $y \sim z$, which would give us, by simmetry and transitivity, $x \sim y$, contradiction. This means that it has to be $z \in[x] \Longrightarrow z \notin[y]$. With a similar argument we can demonstrate that $z \in[y] \Longrightarrow z \notin[x]$ as well, wich means that $x \sim y$ implies $[x] \cap[y]=\emptyset$.

3 Question

Let $f \in(\mathbb{N} \rightarrow \mathbb{N})$. For each of the relations below, prove whether it is an equivalence relation over \mathbb{N} :

1. $x \sim y$ if and only if $f(x)=f(y)$;
2. $x \sim y$ if and only if $f(x) \neq f(y)$;
3. $x \sim y$ if and only if $f^{-1}(x) \cap f^{-1}(y) \neq \emptyset$.

3.1 Answer

1. Yes, because it satisfies all three properties: reflexivity, because $x \sim x$ iff $f(x)=f(x)$, always true; simmetry, because $x \sim y$ iff $f(x)=f(y)$, but if $f(x)=f(y)$ it is also true that $f(y)=f(x)$, therefore $y \sim x$; transitivity because if $x \sim y$ then $f(x)=f(y)$, and if $y \sim z$ then $f(y)=f(z)$ but then we have $f(x)=f(y)=f(z)$ which gives us $x \sim z$.
2. No, because it does not satisfy the reflexive property: $x \sim x \Longrightarrow f(x) \neq$ $f(x)$, a contradiction.
3. Yes, because it satisfies all three properties: reflexivity, because $x \sim x$ iff $f^{-1}(x) \cap f^{-1}(x) \neq \emptyset$, always true because it will always contain at least x ; simmetry, because $x \sim y$ iff $f^{-1}(x) \cap f^{-1}(y) \neq \emptyset$, but then $f^{-1}(y) \cap$ $f^{-1}(x) \neq \emptyset$, thus $y \sim x$; transitivity, because $(x \sim y \wedge y \sim z) \Longrightarrow x \sim z$ iff $\left(f^{-1}(x) \cap f^{-1}(y) \neq \emptyset \wedge f^{-1}(y) \cap f^{-1}(z) \neq \emptyset\right) \Longrightarrow f^{-1}(x) \cap f^{-1}(z) \neq \emptyset$, which is true if $x=y=z$ (it's $a \wedge a \Longrightarrow a$, with $a=f^{-1}(y) \cap f^{-1}(x) \neq$ \emptyset, which we have proven to be always true in the reflexivity case), and otherwise, it remain true since $\left(f^{-1}(x) \cap f^{-1}(y) \neq \emptyset \wedge f^{-1}(y) \cap f^{-1}(z) \neq \emptyset\right)$ is always false if (since two natural numbers cannot have two different images, the only way the intersection of the f^{-1} 's would be nonempty would be if they were the f^{-1} 's of the same element., but we are not in the case in which $x=y=z$, so at least one has to be different, but then one of the two conditions in the conjunction would be false, thus making the implication true because the premise would be false).

4 Question

Let $\left\{\varphi_{n}\right\}_{n \in \mathbb{N}}$ be an enumeration for the set of recursive partial functions from \mathbb{N} to \mathbb{N}, and let \sim be the equivalence relation over \mathbb{N} defined as follows: $i \sim j$ if and only if $\varphi_{i}=\varphi_{j}$. Moreover, let $e \in(\mathbb{N} \times \mathbb{N} \rightsquigarrow \mathbb{N})$ the partial function defined as $e(a, b)=\varphi_{a}(b)$.

Prove that, if $i \sim j$, then $\forall b \in \mathbb{N}, e(i, b)=e(j, b)$.

4.1 Answer

Since $i \sim j \Longrightarrow \varphi_{i}=\varphi_{j}$, we have that $\forall b \in \mathbb{N} . e(i, b)=\varphi_{i}(b)=\varphi_{j}(b)=e(j, b)$.

5 Remark

Notice that, by what you have proved in the previous exercise, it can be deduced that one can obtain a well-defined partial function $f \in(\mathbb{N} / \sim \times \mathbb{N} \rightsquigarrow \mathbb{N})$ by posing $f([a], b)=e(a, b)$.

