Computability Assignment Year 2013/14 - Number 7

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

A set $C \subseteq \mathbb{N}$ is called upward closed iff $\forall x \in C . \forall y \in \mathbb{N}(y>x \Longrightarrow y \in C)$.
Provide a characterization of the set $Z=\{X \mid X \in \mathcal{P}(\mathbb{N}) \wedge X$ is upward closed $\}$ (i.e. find a property p such that $Z=\{X \mid X \in \mathcal{P}(\mathbb{N}) \wedge p(X)\}$, where p could be a conjunction of many "simpler" properties).

1.1 Answer

$\mathrm{p}(\mathrm{x})=\forall y .(y \notin X \vee(y+1) \in X)$

2 Question

A set $X \subseteq \mathbb{N}$ is called cofinite iff $\overline{\{X\}}$ is finite.
Prove or refute the statement: "if $X, Y \in \mathcal{P}(\mathbb{N})$ are NOT cofinite, then $X \cup Y$ is NOT cofinite".

2.1 Answer

If X (respectively Y) is not cofinite, then $\overline{\{X\}}$ (respectively $\overline{\{Y\}}$) is infinite.
But we can't say anything about the finiteness of $\overline{\{X \cup Y\}}=\overline{\{X\}} \cap \overline{\{Y\}}$ (and hence about the cofiniteness of $\{X \cup Y\}$), so the statement is not valid.

For instance, take $\mathrm{X}=\{\mathrm{a} \mid \mathrm{a}$ is even $\}, \mathrm{Y}=\{\mathrm{a} \mid \mathrm{a}$ is odd $\} . \bar{X}$ and \bar{Y} are not finite, so X and Y are not cofinite, but $X \cup Y=\mathbb{N}$, so $\overline{X \cup Y}=\emptyset$ is finite, so $X \cup Y$ is cofinite.

3 Question

In what follows, $A \subseteq \mathbb{N}$.

1. Prove that if there exists a bijection $f \in(\mathbb{N} \rightarrow A)$, then A is infinite.
2. Can you provide an example of an infinite set A and of a function $f \in$ $(\mathbb{N} \rightarrow A)$ which is neither injective nor surjective?

3.1 Answer

1. By contradiction assume A finite, and that there exists a bijection $f \in(\mathbb{N} \rightarrow$ A). Now suppose we take B s.t. $|B|=|A|+1, B \subset \mathbb{N}$. So $|f(B)| \leq|A|<|B|$, then there must be two elements $b_{1}, b_{2} \in B$ s.t. $f\left(b_{1}\right)=f\left(b_{2}\right)$. But then f is not injective, contradicting our hypothesis that f was bijective. So A must be infinite.
2. Take $A=\mathbb{N}, f(n)=0$.
