Computability Assignment Year 2013/14-Number 7

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

A set $C \subseteq \mathbb{N}$ is called upward closed iff $\forall x \in C . \forall y \in \mathbb{N}(y>x \Longrightarrow y \in C)$.
Provide a characterization of the set $Z=\{X \mid X \in \mathcal{P}(\mathbb{N}) \wedge X$ is upward closed $\}$ (i.e. find a property p such that $Z=\{X \mid X \in \mathcal{P}(\mathbb{N}) \wedge p(X)\}$, where p could be a conjunction of many "simpler" properties).

1.1 Answer

$Z=\{X \mid X \in \mathcal{P}(\mathbb{N}) \wedge \forall x \in X . \forall y \in \mathbb{N} .(y>x \Longrightarrow y \in C)\}$

2 Question

A set $X \subseteq \mathbb{N}$ is called cofinite iff $\overline{\{X\}}$ is finite.
Prove or refute the statement: "if $X, Y \in \mathcal{P}(\mathbb{N})$ are NOT cofinite, then $X \cup Y$ is NOT cofinite".

2.1 Answer

If X, Y are not cofinite, then $\mathbb{N}-X$ and $\mathbb{N}-Y$ are infinite. To refute the statement, one has only to show a pair of sets X, Y such that \bar{X}, \bar{Y} are infinite and such that $\overline{X \cup Y}$ is finite. One can take X to be the all even natural numbers, \bar{X} would be all odd natural numbers, and Y to be all odd natural numbers, while \bar{Y} would be all even natural numbers: their union would be \mathbb{N}, and $\overline{X \cup Y}$ would be \emptyset.

3 Question

In what follows, $A \subseteq \mathbb{N}$.

1. Prove that if there exists a bijection $f \in(\mathbb{N} \rightarrow A)$, then A is infinite.
2. Can you provide an example of an infinite set A and of a function $f \in$ $(\mathbb{N} \rightarrow A)$ which is neither injective nor surjective?

3.1 Answer

1. By contradiction, suppose that $f \in(\mathbb{N} \rightarrow A)$ is a bijective function, and that A is finite. Without loss generality, we can assume that A has k elements. Because f is a total function, there exists $f(i) \in A, i \in N, 1 \leq$ $i \leq k$, and since f is injective, $\forall 1 \leq i, j \leq k, i \neq j . f(i) \neq f(j)$. This means that $f(i) \in A, i \in N, 1 \leq i \leq k$ are all the k distinct elements of A, which means that $f(k+1)$ would have to exist, and be an element of A (because f is total), but would also have to be one of the $f(i) \in A, i \in N, 1 \leq i \leq k$ distinc elements generate by a $f(j)$ for a $j<k+1$, since A only has k elements. But this too shouldn't be possible, since f was assumed to be injective, thus we reached a contradiction.
2. Take A to be the set of all even natural numbers, and $f(x)=2$ to be the function from \mathbb{N} to A.
