Year 2013/14 - Number 7

November 25, 2013

Please keep this file anonymous: do not write your name inside this file. More information about assignments at

http://disi.unitn.it/zunino/teaching/computability/assignments.

Question 1. A set $C \subseteq \mathbb{N}$ is called *upward closed* iff

$$\forall x \in C. \forall y \in \mathbb{N} (y > x \Longrightarrow y \in C)$$

Provide a characterization of the set $Z = \{X | X \in P(\mathbb{N}) \land X \text{ is upward closed}\}$ (i.e. find a property p such that $Z = \{X | X \in P(\mathbb{N}) \land p(X)\}$, where p could be a conjuntion of many "simpler" properties).

Answer 1.1. Let's consider the upward-closed property. Notice that

$$\forall x \in C. \forall y \in \mathbb{N} (y > x \Longrightarrow y \in C) \Longrightarrow \forall x \in C, \{y \in \mathbb{N} | y > x\} \subseteq C$$

We distinguish two cases:

- 1. $C = \emptyset$
- 2. $C \neq \emptyset$: by the well-ordering principle, C has a minimum, say $c \in C$ (i.e. $\forall x \in C, x \ge c$). We claim that

$$\forall x \in C, \{n \in \mathbb{N} | n > x\} \subseteq \{n \in \mathbb{N} | n > c\}$$

in fact, $\forall x \in C$, let $m \in \{n \in \mathbb{N} | n > x\} \implies m > x$. Since $x \ge c$, m > c, therefore $m \in \{n \in \mathbb{N} | n > c\}$.

We rewrite the property in this way: $\forall x \in C. \forall y \in \mathbb{N}(y > x \Longrightarrow y \in C) \Leftrightarrow \{n \in \mathbb{N} | n > c\} \subseteq C$, where c is the minimum element of C.

Now we are able to characterize the set Z. We define

$$p(X) \equiv "X = \emptyset \lor \exists m. X = \{n \in \mathbb{N} | n \ge m\}"$$

Question 2. A set $X \subseteq \mathbb{N}$ is called *cofinite* iff $\overline{\{X\}}$ is finite. Prove or refute the statement: "if $X, Y \in P(\mathbb{N})$ are NOT cofinite, then $X \cup Y$ is NOT cofinite".

Answer 2.1. We claim that the implication doesn't hold. In fact, we prove that, given the property " $X, Y \in P(\mathbb{N})$ are NOT cofinite", we shall not conclude neither that $X \cup Y$ is NOT cofinite, nor that $X \cup Y$ is cofinite. Let's consider the two cases:

- 1. suppose that $X, Y \in P(\mathbb{N})$ are NOT cofinite and $X \cup Y$ is NOT cofinite. $X \cup Y$ is NOT cofinite $\Rightarrow \overline{X \cup Y}$ is NOT finite $\Rightarrow \overline{X} \cap \overline{Y}$ is NOT finite. Since X and Y are NOT cofinite, then \overline{X} and \overline{Y} are NOT finite. It's not true that A, B NOT finite $\Rightarrow A \cap B$ NOT finite. For example, take A as the set of even numbers, and B as the set of odd numbers; then $A \cap B = \emptyset$ is finite.
- 2. suppose that $X, Y \in P(\mathbb{N})$ are NOT cofinite and $X \cup Y$ is cofinite. $X \cup Y$ is cofinite $\Rightarrow \overline{X \cup Y}$ is finite $\Rightarrow \overline{X} \cap \overline{Y}$ is finite. Since X and Y are NOT cofinite, then \overline{X} and \overline{Y} are NOT finite. It's not true that A, B NOT finite $\Rightarrow A \cap B$ finite. For example, take $A = \{n \in \mathbb{N} | n > 2\}$ and $B = \{n \in \mathbb{N} | n > 3\}$; then $A \cap B = B$ is NOT finite.

Question 3. In what follows, $A \subseteq \mathbb{N}$.

- 1. Prove that if there exists a bijection $f \in (\mathbb{N} \to A)$, then A is infinite.
- 2. Can you provide an example of an infinite set A and of a function $f \in (\mathbb{N} \to A)$ which is neither injective nor surjective?

Answer 3.1.

- By definition, two sets have the same cardinality iff there exists a bijection that puts in correspondence the elements of the first set with the elements of the second. Suppose that there exists a bijection f ∈ (N → A) and suppose by contradiction that A is finite (i.e. ∃m ∈ N.|A| = m). It follows that also N is finite. We have reached a contradiction, therefore A is infinite.
- 2. Take A as the set of even numbers and take

$$f(n) = \begin{cases} 0 & if \ n \ is \ even \\ 2 & if \ n \ is \ odd \end{cases}$$

The function f is neither injective (f(1) = f(3)) nor surjective $(4 \in A$ has no preimage)