Computability Assignment Year 2013/14-Number 6

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Remember that for all $A \subseteq \mathbb{N}, \bar{A}=\mathbb{N} \backslash A$, and id ${ }_{A}$ is the identity function on A. Let $f \in(\mathbb{N} \rightarrow \mathbb{N})$ and let $A=\{f(n) \mid n$ is a prime number $\}$.

1. Characterize the elements of the set \bar{A} (i.e. find a property p such that $\bar{A}=\{n \mid p(n)\})$. Notice that p could be a conjunction of many "simpler" properties.
2. Define a function $g \in(A \rightarrow \mathbb{N})$ such that $f \circ g=\mathrm{id}_{A}$.

1.1 Answer

1. $A=\{n \mid n=a b, n \in \mathbb{N}, a \neq 1 \wedge b \neq 1\}$
2. Let $f_{\text {pedice }}: A \rightsquigarrow \mathbb{N}$ such that for all $a \in A \cdot f_{\text {pedice }}(a)=f(a)$. Then $g(x)=f_{\text {pedice }}^{-1}(x) . \forall x \in A$

2 Question

Let $A=\left\{n \mid \exists m \in \mathbb{N}\right.$. $\left.n=m^{2}\right\}$ and $B=\{2 n \mid n \in \mathbb{N}\}$. Following the steps outlined below, define a bijection $f \in(\mathbb{N} \rightarrow \mathbb{N})$ such that $f(A)=B$ and $f(\bar{A})=\bar{B}$.

1. Provide a bijection $g \in(A \rightarrow \mathbb{N})$.
2. Provide a bijection $h \in(\mathbb{N} \rightarrow B)$.
3. Argue that there exists a bijection $g^{\prime} \in(\bar{A} \rightarrow \mathbb{N})$.
4. Provide a bijection $h^{\prime} \in(\mathbb{N} \rightarrow \bar{B})$.
5. Prove that the function $f \in(\mathbb{N} \rightarrow \mathbb{N})$ defined as

$$
f(n)= \begin{cases}(h \circ g)(n) & \text { if } n \in A \\ \left(h^{\prime} \circ g^{\prime}\right)(n) & \text { if } n \in \bar{A}\end{cases}
$$

satisfies all the desired properties.

2.1 Answer

1. We take $g(n)=m$, where m is the number such that $m^{2}=n$ that appears in the definition of A.
2. We take $h(n)=2 n$.
3. The set \bar{A} is the set of n such that $n \in \mathbb{N}, \sqrt{n} \notin \mathbb{N}$. A bijection could be $\underline{g^{\prime}}(n)=\min \left(\bar{A} \backslash \cup_{i=0}^{n-2} f(i)\right)$, with $g^{\prime}(0)=\min (\bar{A})$. In other words, the set \bar{A} is an ordered set, and we have a bijection between the i-th member of the set and the natural number i.
4. We take $h^{\prime}(n)=2 n+1$.
5. If $n \in A$, then $\exists m \in \mathbb{N}$ such that $n=m^{2}$. By definition, $g(n)=m$, and $h(g(n))=h(m)=2 m$. Note that $h \circ g$ is a bijection by construction, as it is the composition of two bijections. Dually, if $n \notin A$, and is a natural number, then by definition $n \in \bar{A}$ (thus f is indeed total), and $i_{n}=g^{\prime}(n)$ is the n-th smallest element of \bar{A}, whereas $h^{\prime}\left(g^{\prime}(n)\right)=2 i_{n}+1$. In this case, too, we have that the function is a bijection, because it is the compostion of two bijections. The function is total, since the element can either belong to A or to its complement. Furthermore, A and \bar{A} is a partition of \mathbb{N}, and B and \bar{B} as well, thus $f: \mathbb{N} \rightarrow \mathbb{N}$. And we are indeed sure, by construction, that $f(A)=B$ and $f(\bar{A})=\bar{B}$, since if $a \in A, f(a)=h \circ g(a)$, and $h \circ g: A \rightarrow B$, whereas if $a \notin A$, then $a \in \mathbb{N} \backslash A, f(a)=h^{\prime} \circ g^{\prime}(a)$, and $h^{\prime} \circ g^{\prime}: \mathbb{N} \backslash A \rightarrow \mathbb{N} \backslash B$.
