Computability Assignment Year 2013/14 - Number 6

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Remember that for all $A \subseteq \mathbb{N}$, $\overline{A} = \mathbb{N} \setminus A$, and id_A is the identity function on A. Let $f \in (\mathbb{N} \to \mathbb{N})$ and let $A = \{f(n) | n \text{ is a prime number}\}.$

- 1. Characterize the elements of the set \overline{A} (i.e. find a property p such that $\overline{A} = \{n|p(n)\}$). Notice that p could be a conjunction of many "simpler" properties.
- 2. Define a function $g \in (A \to \mathbb{N})$ such that $f \circ g = id_A$.

1.1 Answer

- 1. $A = \{n | n = ab, n \in \mathbb{N}, a \neq 1 \land b \neq 1\}$
- 2. Let $f_{pedice}: A \rightsquigarrow \mathbb{N}$ such that for all $a \in A.f_{pedice}(a) = f(a)$. Then $g(x) = f_{pedice}^{-1}(x). \forall x \in A$

2 Question

Let $A = \{n | \exists m \in \mathbb{N}. n = m^2\}$ and $B = \{2n | n \in \mathbb{N}\}$. Following the steps outlined below, define a bijection $f \in (\mathbb{N} \to \mathbb{N})$ such that f(A) = B and $f(\overline{A}) = \overline{B}$.

- 1. Provide a bijection $g \in (A \to \mathbb{N})$.
- 2. Provide a bijection $h \in (\mathbb{N} \to B)$.
- 3. Argue that there exists a bijection $g' \in (\overline{A} \to \mathbb{N})$.

- 4. Provide a bijection $h' \in (\mathbb{N} \to \overline{B})$.
- 5. Prove that the function $f \in (\mathbb{N} \to \mathbb{N})$ defined as

$$f(n) = \begin{cases} (h \circ g)(n) & \text{if } n \in A\\ (h' \circ g')(n) & \text{if } n \in \overline{A} \end{cases}$$

satisfies all the desired properties.

2.1 Answer

- 1. We take g(n) = m, where m is the number such that $m^2 = n$ that appears in the definition of A.
- 2. We take h(n) = 2n.
- 3. The set \overline{A} is the set of n such that $n \in \mathbb{N}, \sqrt{n} \notin \mathbb{N}$. A bijection could be $g'(n) = \min(\overline{A} \setminus \bigcup_{i=0}^{n-2} f(i))$, with $g'(0) = \min(\overline{A})$. In other words, the set \overline{A} is an ordered set, and we have a bijection between the i-th member of the set and the natural number i.
- 4. We take h'(n) = 2n + 1.
- 5. If $n \in A$, then $\exists m \in \mathbb{N}$ such that $n = m^2$. By definition, g(n) = m, and h(g(n)) = h(m) = 2m. Note that $h \circ g$ is a bijection by construction, as it is the composition of two bijections. Dually, if $n \notin A$, and is a natural number, then by definition $n \in \overline{A}$ (thus f is indeed total), and $i_n = g'(n)$ is the n-th smallest element of \overline{A} , whereas $h'(g'(n)) = 2i_n + 1$. In this case, too, we have that the function is a bijection, because it is the composition of two bijections. The function is total, since the element can either belong to A or to its complement. Furthermore, A and \overline{A} is a partition of \mathbb{N} , and B and \overline{B} as well, thus $f : \mathbb{N} \to \mathbb{N}$. And we are indeed sure, by construction, that f(A) = B and $f(\overline{A}) = \overline{B}$, since if $a \in A, f(a) = h \circ g(a)$, and $h \circ g : A \to B$, whereas if $a \notin A$, then $a \in \mathbb{N} \setminus A, f(a) = h' \circ g'(a)$, and $h' \circ g' : \mathbb{N} \setminus A \to \mathbb{N} \setminus B$.