Computability Assignment Year 2013/14 - Number 6

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Remember that for all $A \subseteq \mathbb{N}$, $\overline{A} = \mathbb{N} \setminus A$, and id_A is the identity function on A. Let $f \in (\mathbb{N} \to \mathbb{N})$ and let $A = \{f(n) | n \text{ is a prime number}\}.$

- 1. Characterize the elements of the set \overline{A} (i.e. find a property p such that $\overline{A} = \{n|p(n)\}$). Notice that p could be a conjunction of many "simpler" properties.
- 2. Define a function $g \in (A \to \mathbb{N})$ such that $f \circ g = id_A$.

1.1 Answer

1. Since f is a total function from \mathbb{N} to \mathbb{N} itself, f must be defined also for all those $n \in \mathbb{N}$ such that n is not a prime number — i.e. n is a composite number, or more formally $n \in \mathbb{N} | \exists a, b \in \mathbb{N}.ab = n$. Having no more information about f, we have to take into account that f(n), for those n's composite, can go to both the sets A and \overline{A} . But since A contains all the f(n)'s with n prime, \overline{A} cannot contains other f(x)'s with n prime, so it must contains all the f(n)'s with n composite. Finally we can say that p is just this property, — i.e. p = "n is a composite number" — and so $\overline{A} = \{f(n) | p(n)\}.$

2.
$$g(n) = \begin{cases} f^{-1}(n) & \text{if n is a prime number} \\ undefined & \text{otherwise} \end{cases}$$

2 Question

Let $A = \{n | \exists m \in \mathbb{N}. n = m^2\}$ and $B = \{2n | n \in \mathbb{N}\}$. Following the steps outlined below, define a bijection $f \in (\mathbb{N} \to \mathbb{N})$ such that f(A) = B and $f(\overline{A}) = \overline{B}$.

- 1. Provide a bijection $g \in (A \to \mathbb{N})$.
- 2. Provide a bijection $h \in (\mathbb{N} \to B)$.
- 3. Argue that there exists a bijection $g' \in (\overline{A} \to \mathbb{N})$.
- 4. Provide a bijection $h' \in (\mathbb{N} \to \overline{B})$.
- 5. Prove that the function $f \in (\mathbb{N} \to \mathbb{N})$ defined as

$$f(n) = \begin{cases} (h \circ g)(n) & \text{if } n \in A\\ (h' \circ g')(n) & \text{if } n \in \overline{A} \end{cases}$$

satisfies all the desired properties.

2.1 Answer

- 1. $g(n) = \sqrt{n}$, which is bijective (surjectivity holds within the constraints of having A as domain).
- 2. h(n) = 2n, which is bijective.
- 3. It's possible to find a such g'because, thanks to the enumeration method, we can assert that it's always possible to find a bijection between \mathbb{N} and any its subset.
- 4. h'(n) = 2n + 1, which is bijective.
- 5. We can simply reason as follows:

(a)
$$n \in A \implies f(n) = h(g(n)) \implies f(A) = h(g(A)) = h(\mathbb{N}) = B;$$

(b) $n \notin A \implies f(n) = h'(g'(n)) \implies f(\bar{A}) = h'(g'(\bar{A})) = h'(\mathbb{N}) = B = \mathbb{N} \setminus B.$