Computability Assignment Year 2013/14-Number 6

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Remember that for all $A \subseteq \mathbb{N}, \bar{A}=\mathbb{N} \backslash A$, and id_{A} is the identity function on A.
Let $f \in(\mathbb{N} \rightarrow \mathbb{N})$ and let $A=\{f(n) \mid n$ is a prime number $\}$.

1. Characterize the elements of the set \bar{A} (i.e. find a property p such that $\bar{A}=\{n \mid p(n)\})$. Notice that p could be a conjunction of many "simpler" properties.
2. Define a function $g \in(A \rightarrow \mathbb{N})$ such that $f \circ g=\mathrm{id}_{A}$.

1.1 Answer

1. Since f is a total function from \mathbb{N} to \mathbb{N} itself, f must be defined also for all those $n \in \mathbb{N}$ such that n is not a prime number - i.e. n is a composite number, or more formally $n \in \mathbb{N} \mid \exists a, b \in \mathbb{N} . a b=n$. Having no more information about f, we have to take into account that $f(n)$, for those n 's composite, can go to both the sets A and \bar{A}. But since A contains all the $f(n)$'s with n prime, \bar{A} cannot contains other $f(x)$'s with n prime, so it must contains all the $f(n)$'s with n composite. Finally we can say that p is just this property, - i.e. $p=" n$ is a composite number" - and so $\bar{A}=\{f(n) \mid p(n)\}$.
2. $g(n)= \begin{cases}f^{-1}(n) & \text { if } \mathrm{n} \text { is a prime number } \\ \text { undefined } & \text { otherwise }\end{cases}$

2 Question

Let $A=\left\{n \mid \exists m \in \mathbb{N} . n=m^{2}\right\}$ and $B=\{2 n \mid n \in \mathbb{N}\}$. Following the steps outlined below, define a bijection $f \in(\mathbb{N} \rightarrow \mathbb{N})$ such that $f(A)=B$ and $f(\bar{A})=\bar{B}$.

1. Provide a bijection $g \in(A \rightarrow \mathbb{N})$.
2. Provide a bijection $h \in(\mathbb{N} \rightarrow B)$.
3. Argue that there exists a bijection $g^{\prime} \in(\bar{A} \rightarrow \mathbb{N})$.
4. Provide a bijection $h^{\prime} \in(\mathbb{N} \rightarrow \bar{B})$.
5. Prove that the function $f \in(\mathbb{N} \rightarrow \mathbb{N})$ defined as

$$
f(n)= \begin{cases}(h \circ g)(n) & \text { if } n \in A \\ \left(h^{\prime} \circ g^{\prime}\right)(n) & \text { if } n \in \bar{A}\end{cases}
$$

satisfies all the desired properties.

2.1 Answer

1. $g(n)=\sqrt{n}$, which is bijective (surjectivity holds within the constraints of having A as domain).
2. $h(n)=2 n$, which is bijective.
3. It's possible to find a such g^{\prime} because, thanks to the enumeration method, we can assert that it's always possible to find a bijection between \mathbb{N} and any its subset.
4. $h^{\prime}(n)=2 n+1$, which is bijective.
5. We can simply reason as follows:
(a) $n \in A \Longrightarrow f(n)=h(g(n)) \Longrightarrow f(A)=h(g(A))=h(\mathbb{N})=B$;
(b) $n \notin A \Longrightarrow f(n)=h^{\prime}\left(g^{\prime}(n)\right) \Longrightarrow f(\bar{A})=h^{\prime}\left(g^{\prime}(\bar{A})\right)=h^{\prime}(\mathbb{N})=$ $B=\overline{\mathbb{N}} \backslash B$.
