Computability Assignment Year 2013/14-Number 6

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Remember that for all $A \subseteq \mathbb{N}, \bar{A}=\mathbb{N} \backslash A$, and id_{A} is the identity function on A.
Let $f \in(\mathbb{N} \rightarrow \mathbb{N})$ and let $A=\{f(n) \mid n$ is a prime number $\}$.

1. Characterize the elements of the set \bar{A} (i.e. find a property p such that $\bar{A}=\{n \mid p(n)\})$. Notice that p could be a conjunction of many "simpler" properties.
2. Define a function $g \in(A \rightarrow \mathbb{N})$ such that $f \circ g=\mathrm{id}_{A}$.

1.1 Answer

1. Let's denote $P:=\{p \in \mathbb{N} \mid p$ is prime $\}$ in such a way that $f(P)=A$. $\bar{A}=\{n \in \mathbb{N} \mid n \notin A\}=\{f(n) \in \mathbb{N} \mid n$ is not a prime number $\}=\{f(0)\} \cup$ $\{f(1)\} \cup\{f(n) \in \mathbb{N} \mid \exists p, q \in P$ such that $f(n)=p \cdot q\}$.
2. We want that $\forall n \in A . n=f(g(n))$. But since $n \in A$, by definition $\exists p \in$ P. $n=f(p)$. The first condition becomes $n=f(g(n))=f(g(f(p)))$. Hence $g(f(p))$ has to be equal to p. This is easily done by taking $g \in(A \rightarrow \mathbb{N})$ such that $g \circ\left(\left.f\right|_{P}\right)=\operatorname{id}_{P}$.

2 Question

Let $A=\left\{n \mid \exists m \in \mathbb{N}\right.$. $\left.n=m^{2}\right\}$ and $B=\{2 n \mid n \in \mathbb{N}\}$. Following the steps outlined below, define a bijection $f \in(\mathbb{N} \rightarrow \mathbb{N})$ such that $f(A)=B$ and $f(\bar{A})=\bar{B}$.

1. Provide a bijection $g \in(A \rightarrow \mathbb{N})$.
2. Provide a bijection $h \in(\mathbb{N} \rightarrow B)$.
3. Argue that there exists a bijection $g^{\prime} \in(\bar{A} \rightarrow \mathbb{N})$.
4. Provide a bijection $h^{\prime} \in(\mathbb{N} \rightarrow \bar{B})$.
5. Prove that the function $f \in(\mathbb{N} \rightarrow \mathbb{N})$ defined as

$$
f(n)= \begin{cases}(h \circ g)(n) & \text { if } n \in A \\ \left(h^{\prime} \circ g^{\prime}\right)(n) & \text { if } n \in \bar{A}\end{cases}
$$

satisfies all the desired properties.

2.1 Answer

1. $\forall n \in A$ let's define $g(n)=g\left(m^{2}\right)=m$.
2. $\forall n \in \mathbb{N}$ let's define $h(n)=2 n$.
3. Very intuitivly we can write $A=\{0,1,4,9,16,25, \ldots\}$ then $\bar{A}=\{2,3,5,6,7,8,10, \ldots\}$.

Hence we can define $g^{\prime}(2)=0, g^{\prime}(3)=1, g^{\prime}(5)=2, g^{\prime}(6)=3$ and so on. This is a bijection.
4. $B=\{2 n \mid n \in \mathbb{N}\}$ then $\bar{B}=\{2 n+1 \mid n \in \mathbb{N}\}$. Hence $\forall n \in \mathbb{N}$ we define $h^{\prime}(n)=2 n+1$.
5. We have to do two proofs:
(a) $n \in A: f(n)=h(g(n))=h\left(g\left(m^{2}\right)\right)=h(m)=2 m \in B$.
(b) $n \in \bar{A}: f(n)=h^{\prime}\left(g^{\prime}(n)\right)=h^{\prime}(m)=2 m+1 \in \bar{B}$ for some $m \in \mathbb{N}$

