Computability Assignment Year 2013/14-Number 6

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Remember that for all $A \subseteq \mathbb{N}, \bar{A}=\mathbb{N} \backslash A$, and id $_{A}$ is the identity function on A.
Let $f \in(\mathbb{N} \rightarrow \mathbb{N})$ and let $A=\{f(n) \mid n$ is a prime number $\}$.

1. Characterize the elements of the set \bar{A} (i.e. find a property p such that $\bar{A}=\{n \mid p(n)\})$. Notice that p could be a conjunction of many "simpler" properties.
2. Define a function $g \in(A \rightarrow \mathbb{N})$ such that $f \circ g=\mathrm{id}_{A}$.

1.1 Answer

1. $\bar{A}=\{n \in \mathbb{N} \mid \forall m \in \mathbb{N} .(f(m)=n \Rightarrow m$ not prime $)\}$
2. $g(a)=\min (\{m \in \mathbb{N} \mid f(m)=a\})$ Note g is properly defined for each element of A (because each element of A has a counter-image w.r.t. f by definition of A)

2 Question

Let $A=\left\{n \mid \exists m \in \mathbb{N}\right.$. $\left.n=m^{2}\right\}$ and $B=\{2 n \mid n \in \mathbb{N}\}$. Following the steps outlined below, define a bijection $f \in(\mathbb{N} \rightarrow \mathbb{N})$ such that $f(A)=B$ and $f(\bar{A})=\bar{B}$.

1. Provide a bijection $g \in(A \rightarrow \mathbb{N})$.
2. Provide a bijection $h \in(\mathbb{N} \rightarrow B)$.
3. Argue that there exists a bijection $g^{\prime} \in(\bar{A} \rightarrow \mathbb{N})$.
4. Provide a bijection $h^{\prime} \in(\mathbb{N} \rightarrow \bar{B})$.
5. Prove that the function $f \in(\mathbb{N} \rightarrow \mathbb{N})$ defined as

$$
f(n)= \begin{cases}(h \circ g)(n) & \text { if } n \in A \\ \left(h^{\prime} \circ g^{\prime}\right)(n) & \text { if } n \in \bar{A}\end{cases}
$$

satisfies all the desired properties.

2.1 Answer

1. $g(a)=\sqrt{a}$ (note that, by definition of $\mathrm{A}, \forall a \in A . \sqrt{a} \in \mathbb{N}$)
2. $h(a)=2 \cdot a$
3. It is always possible to find a bijection between \mathbb{N} and any non-finite $D \subseteq \mathbb{N}$. This can be done by "enumerating", i.e. defying an order over the elements of the subset (the simplest being plain "less than"): the simply associate each element in D to its 0 -based index in the enumeration, and symmetrically associate each natural i to the $(i+1)^{t h}$ element in the sequence.
4. $h^{\prime}(n)=2 \cdot n+1$
5. Consider the two cases for which f is defined:
(a) if $n \in A$, then $f(n)=(h \circ g)(n)=h(g(n))=2 \cdot \sqrt{n}$. Thus $f(A)=$ $h(g(A))=h(\mathbb{N})=B$. Note this is a bijection (composition of two bijections);
(b) if $n \in \bar{A}$, then $f(n)=\left(h^{\prime} \circ g^{\prime}\right)(n)=h^{\prime}\left(g^{\prime}(n)\right)=2 \cdot g^{\prime}(n)+1$. Note that, by construction, $g^{\prime}(\bar{A})=\mathbb{N}$, so $f(\bar{A})=h^{\prime}\left(g^{\prime}(\bar{A})\right)=h^{\prime}(\mathbb{N})=\bar{B}$; note this is a bijecition as well.

Note f is the union of 2 bijections between disjoint sets, so it is itself a bijection.

