Year 2013/14-Number 6

October 25, 2013

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/zunino/teaching/computability/assignments.

Question 1. Remember that for all $A \in \mathbb{N}, \bar{A}=\mathbb{N} \backslash A$, and $i d_{A}$ is the identity function on A. Let $f \in(\mathbb{N} \rightarrow \mathbb{N})$ and let $A=\{f(n) \mid n$ is a prime number\}.

1. Characterize the elements of the set \bar{A} (i.e. find a property p such that $\bar{A}=\{n \mid p(n)\})$. Notice that p could be a conjunction of many "simpler" proprieties.
2. Define a function $g \in(A \rightarrow \mathbb{N})$ such that $f \circ g=i d_{A}$.

Answer 1.1.

1. We define the property p as $p(n) \equiv(n=f(m)$ for some $n \in \mathbb{N}) \wedge(m=$ $p q$ such that $p, q \neq 1 \wedge p, q \in \mathbb{N})$.
2. Since f is a total function and thanks to the definition of A, we can state that the restriction $f_{\mid B} \in(B \rightarrow A)$, where B is the set of prime numbers, is bijective. We define g as $g(x)=f_{\left.\right|_{B}}^{-1}(x)$.

Question 2. Let $A=\left\{n \mid \exists m \in \mathbb{N} . n=m^{2}\right\}$ and $B=\{2 n \mid n \in \mathbb{N}\}$. Following the steps outlined below, define a bijection $f \in(\mathbb{N} \rightarrow \mathbb{N})$ such that $f(A)=B$ and $f(\bar{A})=\bar{B}$.

1. Provide a bijection $g \in(A \rightarrow \mathbb{N})$.
2. Provide a bijection $h \in(\mathbb{N} \rightarrow B)$.
3. Argue that there exists a bijection $g^{\prime} \in(\bar{A} \rightarrow \mathbb{N})$.
4. Provide a bijection $h^{\prime} \in(\mathbb{N} \rightarrow \bar{B})$.
5. Prove that the function $f \in(\mathbb{N} \rightarrow \mathbb{N})$ defined as

$$
f(n)=\left\{\begin{array}{cl}
(h \circ g)(n) & \text { if } n \in A \\
\left(h^{\prime} \circ g^{\prime}\right)(n) & \text { if } n \in \bar{A}
\end{array}\right.
$$

satisfies all the desired proprieties.

Answer 2.1.

1. We define $g \in(A \rightarrow \mathbb{N})$ as $g(n)=\sqrt{n}$. Notice that $g(n) \in \mathbb{N}$ because $n=m^{2}, m \in \mathbb{N} \Rightarrow g(n)=m \in \mathbb{N}$.
We prove the surjectivity of $g: \forall x \in \mathbb{N}, \exists y=x^{2} \in A$ such that $g(y)=x$, therefore g is surjective.
We prove the injectivity of g : let $x, x^{\prime} \in A$ such that $x \neq x^{\prime}$. Then $g(x)=\sqrt{x} \neq \sqrt{x^{\prime}}=g\left(x^{\prime}\right)$, therefore g is injective.
2. We define $h \in(\mathbb{N} \rightarrow B)$ as $h(n)=2 n$. Clearly, the function is bijective.
3. Notice that \bar{A} is the set of natural number n, for which $\sqrt{n} \notin \mathbb{N}$. We could define the function g^{\prime} in this way:

$$
\begin{gathered}
\bar{A} \xrightarrow{g} \mathbb{N} \\
2 \rightarrow 1 \\
3 \rightarrow 2 \\
5 \rightarrow 3 \\
6 \rightarrow 4
\end{gathered}
$$

and so on.. That function g will be bijective.
4. We define $h^{\prime} \in(\mathbb{N} \rightarrow \bar{B})$ as $h^{\prime}(n)=2 n+1$. Clearly, the function is bijective.
5. We prove that the function f defined above, satisfies all the desired properties.
First of all notice that $\operatorname{dom}(f)=A \cup \bar{A}=\mathbb{N}$ and $\operatorname{ran}(f)=(\{h(g(x)) \mid x \in$ $\left.A\} \cup\left\{h^{\prime}\left(g^{\prime}(x)\right) \mid x \in \bar{A}\right\}\right) \subseteq B \cup \bar{B}=\mathbb{N}$, therefore $f \in(\mathbb{N} \rightarrow \mathbb{N})$. Then observe that f is bijective because composition of bijective functions. We state that $f(A)=B: \forall x \in A, f(x)=h(g(x))=h(\sqrt{x})=2 \sqrt{x} \in$ B and $\forall x \in B \exists y=\left(\frac{x}{2}\right)^{2} \in A$ such that $f(y)=x$.
We state that $f(\bar{A})=\bar{B}: \forall x \in \bar{A}, f(x)=h(g(x)) \in \bar{B}$ and $\forall x \in \bar{B}$ $\exists y=g^{\prime-1}\left(\frac{x-1}{2}\right)$ such that $f(y)=x$ (notice that $\frac{x-1}{2} \in \mathbb{N}$ and g^{\prime} bijective, so that y actually exists).
document

