Computability Assignment Year 2012/13 - Number 5

Please keep this file anonymous: do not write your name inside this file.

 $More information about assignments at \ http://disi.unitn.it/\sim zunino/teaching/computability/assignments$

Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Prove by induction that $\forall k \in \mathbb{N}. 9^k - 2^k$ is a multiple of 7. Follow the steps outlined below.

- 1. Prove that, if k=0, then 9^0-2^0 is a multiple of 7. This is the basis of the induction.
- 2. Now, suppose that for a generic natural number n, it is true that $9^n 2^n$ is a multiple of 7. By only using this inductive hypothesis, prove that $9^{n+1} 2^{n+1}$ is a multiple of 7. To do so, use the identity:

$$9^{n+1} - 2^{n+1} = 9^{n+1} - 9^n \cdot 2 + 9^n \cdot 2 - 2^{n+1}$$

and a clever factorization of the right-hand side of the equality. Remember that, at some point, you are expected to use the *inductive hypothesis*.

1.1 Answer

We can proove that $\forall k \in \mathbb{N}. 9^k - 2^k$ is a multiple of 7 by induction:

- 1) The base case is k = 0 and we have $9^0 2^0 = 1 1 = 0$ and 0 is obviously divisible by 7.
- 2) We assume that (9^n-2^n) is divisible by 7 and we have to proove that also $(9^{n+1}-2^{n+1})$ is divisible by 7.

So we write
$$9^{n+1} - 2^{n+1} = 9^{n+1} - 9 \cdot 2 + 9^n \cdot 2 - 2^{n+1} = 9^n (9-2) + 2(9^n - 2^n) = 9^n \cdot 7 + 2 \cdot 7 \cdot c = 7 \cdot (9^n + 2 \cdot c).$$

We use the inductive hp when we say $(9^n - 2^n) = 7 \cdot c$.

So we have shown that $(9^{n+1} - 2^{n+1})$ is divisible by 7.

2 Preliminaries

Let P(k) be the property " $\forall n, m \in \mathbb{N}$. max(n, m) = k implies n = m". The following is a proof by induction that $\forall k \in \mathbb{N}.P(k)$.

- 1. Basis of the induction: if max(n, m) = 0 then n = m = 0, as we wanted.
- 2. Inductive step: suppose that P(k) is true for a generic natural number k; we want to prove that this implies P(k+1), i.e. that for all natural numbers n,m such that $max(n,m)=k+1,\ n=m$. So, let $n,m\in\mathbb{N}$ satisfy max(n,m)=k+1. Then max(n-1,m-1)=max(n,m)-1=k. By the induction hypothesis, it follows that n-1=m-1, and therefore n=m. This proves P(k+1), so the induction step is complete.

3 Question

Is the above proof correct? If not, can you tell what is wrong with it?

3.1 Answer

P(k) be the property " $\forall n, m \in \mathbb{N}$. max(n, m) = k implies n = m".

This is false. To prove that we can do an counterexample: we choose k = 1 and m = 0, n = 1. We satisfies max(n, m) = 1, but $n \neq m$.

In the proof we saw above the error is that it isn't true that n-1=m-1, in our counterexample we have $0-1\neq 1-1$.