Computability Assignment Year 2012/13-Number 5

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Prove by induction that $\forall k \in \mathbb{N} .9^{k}-2^{k}$ is a multiple of 7 . Follow the steps outlined below.

1. Prove that, if $k=0$, then $9^{0}-2^{0}$ is a multiple of 7 . This is the basis of the induction.
2. Now, suppose that for a generic natural number n, it is true that $9^{n}-2^{n}$ is a multiple of 7 . By only using this inductive hypothesis, prove that $9^{n+1}-2^{n+1}$ is a multiple of 7 . To do so, use the identity:

$$
9^{n+1}-2^{n+1}=9^{n+1}-9^{n} \cdot 2+9^{n} \cdot 2-2^{n+1}
$$

and a clever factorization of the right-hand side of the equality. Remember that, at some point, you are expected to use the inductive hypothesis.

1.1 Answer

We can proove that $\forall k \in \mathbb{N} .9^{k}-2^{k}$ is a multiple of 7 by induction:

1) The base case is $k=0$ and we have $9^{0}-2^{0}=1-1=0$ and 0 is obviusly divisible by 7 .
2) We assume that $\left(9^{n}-2^{n}\right)$ is divisible by 7 and we have to proove that also $\left(9^{n+1}-2^{n+1}\right)$ is divisible by 7 .

So we write $9^{n+1}-2^{n+1}=9^{n+1}-9 \cdot 2+9^{n} \cdot 2-2^{n+1}=9^{n}(9-2)+2\left(9^{n}-2^{n}\right)=$ $9^{n} \cdot 7+2 \cdot 7 \cdot c=7 \cdot\left(9^{n}+2 \cdot c\right)$.

We use the inductive hp when we say $\left(9^{n}-2^{n}\right)=7 \cdot c$.
So we have shown that $\left(9^{n+1}-2^{n+1}\right)$ is divisible by 7 .

2 Preliminaries

Let $P(k)$ be the property " $\forall n, m \in \mathbb{N}$. $\max (n, m)=k$ implies $n=m$ ". The following is a proof by induction that $\forall k \in \mathbb{N} . P(k)$.

1. Basis of the induction: if $\max (n, m)=0$ then $n=m=0$, as we wanted.
2. Inductive step: suppose that $P(k)$ is true for a generic natural number k; we want to prove that this implies $P(k+1)$, i.e. that for all natural numbers n, m such that $\max (n, m)=k+1, n=m$. So, let $n, m \in \mathbb{N}$ satisfy $\max (n, m)=k+1$. Then $\max (n-1, m-1)=\max (n, m)-1=k$. By the induction hypothesis, it follows that $n-1=m-1$, and therefore $n=m$. This proves $P(k+1)$, so the induction step is complete.

3 Question

Is the above proof correct? If not, can you tell what is wrong with it?

3.1 Answer

$P(k)$ be the property " $\forall n, m \in \mathbb{N}$. $\max (n, m)=k$ implies $n=m$ ".
This is false. To prove that we can do an counterexample: we choose $k=1$ and $m=0, n=1$. We satisfies $\max (n, m)=1$, but $n \neq m$.

In the proof we saw above the error is that it isn't true that $n-1=m-1$, in our counterexample we have $0-1 \neq 1-1$.

