Computability Assignment Year 2012/13 - Number 5

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Prove by induction that $\forall k \in \mathbb{N}$. $9^k - 2^k$ is a multiple of 7. Follow the steps outlined below.

- 1. Prove that, if k = 0, then $9^0 2^0$ is a multiple of 7. This is the basis of the induction.
- 2. Now, suppose that for a generic natural number n, it is true that $9^n 2^n$ is a multiple of 7. By only using this *inductive hypothesis*, prove that $9^{n+1} 2^{n+1}$ is a multiple of 7. To do so, use the identity:

 $9^{n+1} - 2^{n+1} = 9^{n+1} - 9^n \cdot 2 + 9^n \cdot 2 - 2^{n+1}$

and a clever factorization of the right-hand side of the equality. Remember that, at some point, you are expected to use the *inductive hypothesis*.

1.1 Answer

- 1. if k = 0, then $9^0 2^0 = 0$ is a multiple of 7 (in fact, $0 = 7 \times 0$)
- 2. Supposing $\exists c \in \mathbb{Z}$. $9^n 2^n = 7 \cdot c$ for a generic $n \in \mathbb{N}$,

$$9^{n+1} - 2^{n+1} = 9^{n+1} - 9^n \cdot 2 + 9^n \cdot 2 - 2^{n+1} = 9^n (9-2) + 2 (9^n - 2^n) = 7 \cdot 9^n + 2 (7 \cdot c) = 7 (9^n + 2c)$$

(where c is the integer which exist by inductive hypothesis). We thus proved $\exists d \in \mathbb{Z}$. $9^{n+1}-2^{n+1}=7 \cdot d$. The thesis is thus proved by induction.

2 Preliminaries

Let P(k) be the property " $\forall n, m \in \mathbb{N}$. max(n,m) = k implies n = m". The following is a proof by induction that $\forall k \in \mathbb{N}. P(k)$.

- 1. Basis of the induction: if max(n,m) = 0 then n = m = 0, as we wanted.
- 2. Inductive step: suppose that P(k) is true for a generic natural number k; we want to prove that this implies P(k + 1), i.e. that for all natural numbers n, m such that max(n, m) = k + 1, n = m. So, let $n, m \in \mathbb{N}$ satisfy max(n,m) = k+1. Then max(n-1,m-1) = max(n,m) 1 = k. By the induction hypothesis, it follows that n-1 = m-1, and therefore n = m. This proves P(k + 1), so the induction step is complete.

3 Question

Is the above proof correct? If not, can you tell what is wrong with it?

3.1 Answer

The theorem is obviously wrong. The problem is in the inductive step: let's follow the proof at the step when k + 1 = 1, so k = 0

- "let $n, m \in \mathbb{N}$ satisfy max(n, m) = k + 1": consider n = 1, m = 0 (which satisfy the condition)
- "Then $max(n-1, m-1) = \dots = k$ ": in our case, max(n-1, m-1) = max(0, -1) = 0 = k
- "By the induction hypothesis, it follows that n-1 = m-1" (this is wrong): in the induction step, we can assume that $\forall n, m \in \mathbb{N}$. $(max(n,m) = k \rightarrow n = m)$, but we can NOT assume $\forall n, m \in \mathbb{Z}$. $(max(n,m) = k \rightarrow n = m)$: in our case, $n-1 = -1 \notin \mathbb{N}$, so the induction hypothesis does not apply.
- Starting from this wrong assumption, the false thesis is then proved.