Computability Assignment Year 2012/13 - Number 4

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Let A, B be sets and suppose that $A \leftrightarrow B$ (i.e. there exists a bijection $f \in$ $(A \rightarrow B))$. Show that for all sets $C,(C \rightarrow(A \times A)) \leftrightarrow(C \rightarrow(A \times B))$.

1.1 Answer

Since we have a bijection between A and B, we can transfrom the element of B in $(C \rightarrow(A \times A)) \leftrightarrow(C \rightarrow(A \times B))$ into an element of A, then the function we are looking for would just be the identity function.

2 Question

1. Doeas a surjective function $f \in(\mathbb{N} \rightarrow(\mathbb{N} \rightarrow\{0,1,2,3\}))$ exist?
2. Does an injective function $f \in(\mathcal{P}(\mathbb{N}) \rightsquigarrow \mathbb{N})$ exist?
3. Does an injective function $f \in(\mathcal{P}(\mathbb{N}) \rightarrow \mathbb{N})$ exist?

Justify your answers.

2.1 Answer

1. No, suppose that f existed. Consider $g(x)=(f(x)(x)+1) \% 4$. Since f is surjective, and g a function in its range, it means that for some $i, f(i)=g$. But then $\mathrm{f}(\mathrm{i})(\mathrm{i})=\mathrm{g}(\mathrm{i})=(\mathrm{f}(\mathrm{i})(\mathrm{i})+1) \% 4$, contradiction.
2. Yes, take $f(\{a\})=a, a \in N$
3. No. Suppose that there was such a function. Then there would be a partial function $f^{-1}: N \rightsquigarrow P(N)$, that would have to be surjective (because f is a total function, therefore connects every element of $\mathrm{P}(\mathrm{N})$ to an element of N) as well as injective (becuse by hypothesis, f is injective, thus its inverse is an injective partial function). This means that the function $f_{2}^{-1}: A \rightarrow P(N)$ where $\mathrm{A}=$ range(f) is a bijection. But we already know that $P(A) \subseteq P(N)$, and from Cantor's argument we know that there does not exist a bijection between A and $\mathrm{P}(\mathrm{A})$, because the function is not surjective, but then $f_{2}^{-1}: A \rightarrow P(N)$ cannot be surjective either (because the codomain $\mathrm{P}(\mathrm{A})$ is a subset of $\mathrm{P}(\mathrm{N})$), thus the function is not a bijection, contradiction.

3 Question

Let A, B be nonempty sets and let $f \in(A \rightarrow B)$. Define a function $g \in(B \rightsquigarrow A)$ such that $\operatorname{dom}(g) \neq \emptyset$ and for all $b \in \operatorname{dom}(\mathrm{~g}),(f \circ g)(b)=b$.

3.1 Answer

One needs only to take $g: B \rightarrow A$, where $\operatorname{dom}(g)=\operatorname{range}(f)$, defined as $g(b)=\min (\{a \mid a \in A \wedge f(a)=b\})$. Note that C is always different from the empty set, because both A and B are non empty, and f is total (thus sends each element of A into an element of B).

