Computability Assignment Year 2012/13 - Number 4

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Let A, B be sets and suppose that $A \leftrightarrow B$ (i.e. there exists a bijection $f \in$ $(A \rightarrow B))$. Show that for all sets $C,(C \rightarrow(A \times A)) \leftrightarrow(C \rightarrow(A \times B))$.

1.1 Answer

By the formula $(C \rightarrow(A \times A)) \leftrightarrow(C \rightarrow(A \times B))$ can we see that we have a bijctive between $(C \rightarrow(A \times A))$ and $(C \rightarrow(A \times B))$ and so to verify that the given formula is true for all C we find a bijective formula $g \in(A \rightarrow B)$ such that we can replace the second element of pair $<a_{1}, a_{2}>\in(A \times A)$ with $b \in B$ to obtain $<a_{3}, b>\in(A \times B)$ and vice versa i.e $g^{-1}(b)=a_{2}$. The function g has necessarily f since there is a bijection between A and B . As regards the bijection between A and the same A is always verified and so we can affirm that $\forall C .(C \rightarrow(A \times A)) \leftrightarrow(C \rightarrow(A \times B))$.

2 Question

1. Doeas a surjective function $f \in(\mathbb{N} \rightarrow(\mathbb{N} \rightarrow\{0,1,2,3\}))$ exist?
2. Does an injective function $f \in(\mathcal{P}(\mathbb{N}) \rightsquigarrow \mathbb{N})$ exist?
3. Does an injective function $f \in(\mathcal{P}(\mathbb{N}) \rightarrow \mathbb{N})$ exist?

Justify your answers.

2.1 Answer

1. Yes because we can rewrite $f \in(\mathbb{N} \rightarrow(\mathbb{N} \rightarrow\{0,1,2,3\}))$ as $f \in f(g(x))$ where $g(x)=(\mathbb{N} \rightarrow\{0,1,2,3\})$ and $f(x)=\mathbb{N} \rightarrow(g(x)) . g(x)$ is surjective since all elements of codomain are figures of domain and since the domain of $g(x)$ is equal of domain of $f(x)$ we can say that $f(x)$ is surjective.
2. Yes because since f is a partial function it is not necessary that all elements of the domain, in this case $(\mathcal{P}(\mathbb{N})$, have a corresponding element in the codomain which in this case is \mathbb{N}.
3. No because f is a total function and then to be injective each element x must have a different $f(x)$ and this is not possible since the set $(\mathcal{P}(\mathbb{N})$ is by definition larger than \mathbb{N}.

3 Question

Let A, B be nonempty sets and let $f \in(A \rightarrow B)$. Define a function $g \in(B \rightsquigarrow A)$ such that $\operatorname{dom}(g) \neq \emptyset$ and for all $b \in \operatorname{dom}(\mathrm{~g}),(f \circ g)(b)=b$.

3.1 Answer

Since g is a parzial function the domain of g shall not contain all element of B and so $\operatorname{dom}(g) \subset B$. Assumed that $g=f^{-1}$ we can note that $\operatorname{ran}(f)=\operatorname{dom}(g) \subset B$. Than $\forall b \in \operatorname{dom}(g) \cdot f(g(b))=f\left(f^{-1}(b)\right)=b$ while $\forall b^{\prime} \notin \operatorname{dom}(g) \cdot f\left(f^{-1}\left(b^{\prime}\right)\right)$ is not defined.

