Computability Assignment Year 2012/13 - Number 4

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Let A, B be sets and suppose that $A \leftrightarrow B$ (i.e. there exists a bijection $f \in$ $(A \rightarrow B))$. Show that for all sets $C,(C \rightarrow(A \times A)) \leftrightarrow(C \rightarrow(A \times B))$.

1.1 Answer

If exists a function $(C \rightarrow(A \times A))$ it is possible to map the domain of this function to $(A \times B)$, because $A \leftrightarrow B$, and obtain $(C \rightarrow(A \times B))$.
The mapping is possible because $\forall a, y \in A .(a, y) \in A \times A . \exists!b=f(y) . b \in$ $B .(a, b) \in A \times B$
With the same reasoning is possible to prove the mapping from $B \times A$ to $A \times A$

2 Question

1. Doeas a surjective function $f \in(\mathbb{N} \rightarrow(\mathbb{N} \rightarrow\{0,1,2,3\}))$ exist?
2. Does an injective function $f \in(\mathcal{P}(\mathbb{N}) \rightsquigarrow \mathbb{N})$ exist?
3. Does an injective function $f \in(\mathcal{P}(\mathbb{N}) \rightarrow \mathbb{N})$ exist?

Justify your answers.

2.1 Answer

1. Yes, it exists: $f(f(x))=x-\left\lfloor\frac{x}{4}\right\rfloor 4$. Proof. $\forall y \in\{0,1,2,3\} \exists x \in \mathbb{N}$, namely $y+\left\lfloor\frac{x}{4}\right\rfloor 4$ such that $f(x)=f\left(y+\left\lfloor\frac{x}{4}\right\rfloor 4\right)=y+\left\lfloor\frac{x}{4}\right\rfloor 4-\left\lfloor\frac{y+\left\lfloor\frac{x}{4}\right\rfloor 4}{4}\right\rfloor 4=y+\left\lfloor\frac{x}{4}\right\rfloor 4-\left\lfloor\frac{x}{4}\right\rfloor 4=y$ This proves that the function is surjective
2. Yes, it exists: $\mathrm{f}(\mathrm{x}) \begin{cases}x & \text { if }\{x\} \\ \text { undefined } & \text { otherwise }\end{cases}$
3. No, it doesn't exist. It can be proved using the diagonalization argument.

3 Question

Let A, B be nonempty sets and let $f \in(A \rightarrow B)$. Define a function $g \in(B \rightsquigarrow A)$ such that $\operatorname{dom}(g) \neq \emptyset$ and for all $b \in \operatorname{dom}(\mathrm{~g}),(f \circ g)(b)=b$.

3.1 Answer

Let $A=\{1,2,3,4,5\}$ and $B=\{0,1,2,3\}$
$f(x)=\left\lfloor\frac{x}{4}\right\rfloor$
$g(y)= \begin{cases}y & y \geq 0 \\ \text { undefined } & \text { otherwise }\end{cases}$

