Computability Assignment Year 2012/13 - Number 4

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Let A, B be sets and suppose that $A \leftrightarrow B$ (i.e. there exists a bijection $f \in (A \to B)$). Show that for all sets $C, (C \to (A \times A)) \leftrightarrow (C \to (A \times B))$.

1.1 Answer

By hypothesis $\exists f \in (A \leftrightarrow B)$. I define $g \in ((A \times A) \to (A \times B))$ such that $g(a_1, a_2) = (a_1, f(a_2))$. Of course g is a bijection, since its component are bijections (identity and f).

Now I define $H \in ((C \to (A \times A)) \to (C \to (A \times B)))$ such that $H(q) := g \circ q$. $q \in (C \to (A \times A))$, so that it makes sense to do H(q). Since $g \in ((A \times A) \to (A \times B))$ and $q \in (C \to (A \times A))$ then $g \circ q \in (C \to (A \times B))$. Hence H is well defined.

Now I proove that H is a bijection:

- 1. *H* injective: Let $q_1, q_2 \in (C \to (A \times A))$ such that $H(q_1) = H(q_2)$ and $q_1(c) = (a_{11}, a_{12}), q_2 = (a_{21}, a_{22})$. I want to prove that $q_1 = q_2$.
 - (a) $H(q_1)(c) = g \circ q_1(c) = g(q_1(c)) = g((a_{11}, a_{12})) = (a_{11}, f(a_{12}));$
 - (b) $H(q_2)(c) = g \circ q_2(c) = g(q_2(c)) = g((a_{21}, a_{22})) = (a_{21}, f(a_{22}));$
 - (c) By setting $H(q_1) = H(q_2)$, we obtain directly that $a_{11} = a_{21}$ and $f(a_{12}) = f(a_{22})$. Hence, by the fact that f is injective we are done.
- 2. *H* surjective: Let $p \in (C \to (A \times B))$ such that p(c) = (a, b) where $b \in B$. Since *f* is surjective we know that $\exists a_b \in A$ such that $b = f(a_b)$. Then, if I take $q(c) = (a, a_b) \in (C \to (A \times A))$ we have that $H(q)(c) = g \circ q(c) = g(q(c)) = g((a, a_b)) = (a, b) = p(c)$.

2 Question

- 1. Doeas a surjective function $f \in (\mathbb{N} \to (\mathbb{N} \to \{0, 1, 2, 3\}))$ exist?
- 2. Does an injective function $f \in (\mathcal{P}(\mathbb{N}) \rightsquigarrow \mathbb{N})$ exist?
- 3. Does an injective function $f \in (\mathcal{P}(\mathbb{N}) \to \mathbb{N})$ exist?

Justify your answers.

2.1 Answer

- 1. No: Let $f \in (\mathbb{N} \to (\mathbb{N} \to \{0, 1, 2, 3\}))$. Let's define $g \in (\mathbb{N} \to \{0, 1, 2, 3, 4\})$ such that $g(n) := \begin{cases} 0 & if \quad f(n)(n) = 4\\ f(n)(n) + 1 & if \quad f(n)(n) \neq 4 \end{cases}$. I want to proove that f isn't surjective, i.e. $\forall n \in \mathbb{N}.g \neq f(n)$. By contraddiction let g = f(n) for some n. Then g(n) = f(n)(n). We have now two cases:
 - (a) $f(n)(n) = 4 \Rightarrow g(n) = 0$. Since g(n) = f(n)(n) I obtain 4 = 0, which is absurd;
 - (b) $f(n)(n) \neq 4 \Rightarrow g(n) = f(n)(n) + 1$. Since g(n) = f(n)(n) I obtain f(n)(n) = f(n)(n) + 1, which is absurd too.
- 2. Yes: $f(\{n\}) = n$ is the requested function because $f \in (\mathcal{P}(\mathbb{N}) \rightsquigarrow \mathbb{N})$ and it's injective. Note that it is a partial function because it takes as input only the subsets of \mathbb{N} of the form $\{n\}$ and because $f(\emptyset)$ is undefined.
- 3. No: By contraddiction f is injective. Then $f|_F$ is bijective where $F = ran(f) \subseteq \mathbb{N}$. Then $F \leftrightarrow \mathcal{P}(\mathbb{N})$. But F is an infinite subset of \mathbb{N} , then $F \leftrightarrow \mathbb{N}$. Absurd.

3 Question

Let A, B be nonempty sets and let $f \in (A \to B)$. Define a function $g \in (B \rightsquigarrow A)$ such that dom $(g) \neq \emptyset$ and for all $b \in \text{dom}(g)$, $(f \circ g)(b) = b$.

3.1 Answer

The unique constraints that has to be putted on g is that dom(g) = f(A). Of course $dom(g) \neq \emptyset$ and $\forall b \in dom(g) \ g(b) \in f^{-1}(b)$, so that $f \circ g(b) = f(g(b)) = b$.