Computability Assignment Year 2012/13 - Number 4

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Let A, B be sets and suppose that $A \leftrightarrow B$ (i.e. there exists a bijection $f \in$ $(A \rightarrow B))$. Show that for all sets $C,(C \rightarrow(A \times A)) \leftrightarrow(C \rightarrow(A \times B))$.

1.1 Answer

By hypothesis $\exists f \in(A \leftrightarrow B)$. I define $g \in((A \times A) \rightarrow(A \times B))$ such that $g\left(a_{1}, a_{2}\right)=\left(a_{1}, f\left(a_{2}\right)\right)$. Of course g is a bijection, since its component are bijections (identity and f).

Now I define $H \in((C \rightarrow(A \times A)) \rightarrow(C \rightarrow(A \times B)))$ such that $H(q):=g \circ q$. $q \in(C \rightarrow(A \times A))$, so that it makes sense to do $H(q)$. Since $g \in((A \times A) \rightarrow$ $(A \times B))$ and $q \in(C \rightarrow(A \times A))$ then $g \circ q \in(C \rightarrow(A \times B))$. Hence H is well defined.

Now I proove that H is a bijection:

1. H injective: Let $q_{1}, q_{2} \in(C \rightarrow(A \times A))$ such that $H\left(q_{1}\right)=H\left(q_{2}\right)$ and $q_{1}(c)=\left(a_{11}, a_{12}\right), q_{2}=\left(a_{21}, a_{22}\right)$. I want to proove that $q_{1}=q_{2}$.
(a) $H\left(q_{1}\right)(c)=g \circ q_{1}(c)=g\left(q_{1}(c)\right)=g\left(\left(a_{11}, a_{12}\right)\right)=\left(a_{11}, f\left(a_{12}\right)\right)$;
(b) $H\left(q_{2}\right)(c)=g \circ q_{2}(c)=g\left(q_{2}(c)\right)=g\left(\left(a_{21}, a_{22}\right)\right)=\left(a_{21}, f\left(a_{22}\right)\right)$;
(c) By setting $H\left(q_{1}\right)=H\left(q_{2}\right)$, we obtain directly that $a_{11}=a_{21}$ and $f\left(a_{12}\right)=f\left(a_{22}\right)$. Hence, by the fact that f is injective we are done.
2. H surjective: Let $p \in(C \rightarrow(A \times B))$ such that $p(c)=(a, b)$ where $b \in B$. Since f is surjective we know that $\exists a_{b} \in A$ such that $b=f\left(a_{b}\right)$. Then, if I take $q(c)=\left(a, a_{b}\right) \in(C \rightarrow(A \times A))$ we have that $H(q)(c)=g \circ q(c)=$ $g(q(c))=g\left(\left(a, a_{b}\right)\right)=(a, b)=p(c)$.

2 Question

1. Doeas a surjective function $f \in(\mathbb{N} \rightarrow(\mathbb{N} \rightarrow\{0,1,2,3\}))$ exist?
2. Does an injective function $f \in(\mathcal{P}(\mathbb{N}) \rightsquigarrow \mathbb{N})$ exist?
3. Does an injective function $f \in(\mathcal{P}(\mathbb{N}) \rightarrow \mathbb{N})$ exist?

Justify your answers.

2.1 Answer

1. No: Let $f \in(\mathbb{N} \rightarrow(\mathbb{N} \rightarrow\{0,1,2,3\}))$. Let's define $g \in(\mathbb{N} \rightarrow\{0,1,2,3,4\})$ such that $g(n):=\left\{\begin{array}{ccc}0 & \text { if } & f(n)(n)=4 \\ f(n)(n)+1 & \text { if } & f(n)(n) \neq 4\end{array}\right.$. I want to proove that f isn't surjective, i.e. $\forall n \in \mathbb{N}$. $g \neq f(n)$. By contraddiction let $g=f(n)$ for some n. Then $g(n)=f(n)(n)$. We have now two cases:
(a) $f(n)(n)=4 \Rightarrow g(n)=0$. Since $g(n)=f(n)(n)$ I obtain $4=0$, which is absurd;
(b) $f(n)(n) \neq 4 \Rightarrow g(n)=f(n)(n)+1$. Since $g(n)=f(n)(n)$ I obtain $f(n)(n)=f(n)(n)+1$, which is absurd too.
2. Yes: $f(\{n\})=n$ is the requested function because $f \in(\mathcal{P}(\mathbb{N}) \rightsquigarrow \mathbb{N})$ and it's injective. Note that it is a partial function because it takes as input only the subsets of \mathbb{N} of the form $\{n\}$ and because $f(\emptyset)$ is undefinied.
3. No: By contraddiction f is injective. Then $\left.f\right|_{F}$ is bijective where $F=$ $\operatorname{ran}(f) \subseteq \mathbb{N}$. Then $F \leftrightarrow \mathcal{P}(\mathbb{N})$. But F is an infinite subset of \mathbb{N}, then $F \leftrightarrow \mathbb{N}$. Absurd.

3 Question

Let A, B be nonempty sets and let $f \in(A \rightarrow B)$. Define a function $g \in(B \rightsquigarrow A)$ such that $\operatorname{dom}(g) \neq \emptyset$ and for all $b \in \operatorname{dom}(\mathrm{~g}),(f \circ g)(b)=b$.

3.1 Answer

The unique constraints that has to be putted on g is that $\operatorname{dom}(g)=f(A)$. Of course $\operatorname{dom}(g) \neq \emptyset$ and $\forall b \in \operatorname{dom}(g) g(b) \in f^{-1}(b)$, so that $f \circ g(b)=f(g(b))=b$.

