Year 2013/14 - Number 4

October 11, 2013

Please keep this file anonymous: do not write your name inside this file. More information about assignments at

http://disi.unitn.it/zunino/teaching/computability/assignments.

Question 1. Let A, B be sets and suppose that $A \leftrightarrow B$ (i.e. there exists a bijection $f \in (A \to B)$). Show that for all sets $C, (C \to (A \times A)) \leftrightarrow (C \to (A \times B))$.

Answer 1.1. Let $Left \in (X \times Y \to X)$ and $Right \in (X \times Y \to Y)$ be the projection maps from a pair onto the left and right component respectively: $Left(\langle x, y \rangle) = x$

 $Right(\langle x, y \rangle) = y$

Let $h \in (A \leftrightarrow B)$ be a bijection between the given sets A and B. Consider $f \in (C \to (A \times A))$. It follows that $\forall x \in C, f(x) = \langle a, b \rangle$, where $a \in A, b \in A$. We want to build a bijection Φ , such that $\forall f \in (C \to (A \times A)), \Phi(f) \in (C \to (A \times B))$. We define $\Phi(f)(x) = \langle Left(f(x)), h(Right(f(x))) \rangle$, for all $x \in C$.

Notice that $h(Right(f(x)) \in B$ because of the definition of h, therefore the function $\Phi(f)$ is actually an element of $(C \to (A \times B))$. We can state that Φ is injective because h is injective, therefore different function f, f' are mapped in different g, g'. We can also state that Φ is surjective because h is bijective, therefore it exists an inverse function h^{-1} which maps every element $b \in B$ onto an element $a \in A$:

Consider $g \in (C \to (A \times B))$, we define $\Phi^{-1}(g)(x) = \langle Left(g(x)), h^{-1}(Right(g(x))) \rangle$.

Question 2.

- 1. Does a surjective function $f \in (\mathbb{N} \to (\mathbb{N} \to \{0, 1, 2, 3\}))$ exist?
- 2. Does an injective function $f \in (P(\mathbb{N}) \rightsquigarrow \mathbb{N})$ exist?

3. Does an injective function $f \in (P(\mathbb{N}) \to \mathbb{N})$ eist?

Justify your answers.

Answer 2.1.

- 1. no. Notice that it exists a bijection $h \in (P(\mathbb{N}) \leftrightarrow (\mathbb{N} \to \{0, 1\})$ defined $\forall C \in P(\mathbb{N}) \ h(C)(x) = 1$ if $x \in C$, 0 otherwise.Notice also that $(\mathbb{N} \to \{0, 1\}) \subset (\mathbb{N} \to \{0, 1, 2, 3\})$. The diagonalization argument used in the proof of Cantor's theorem, states that there is no surjective function between A and P(A), therefore, in particular there is no surjective function between \mathbb{N} and $P(\mathbb{N})$. It follows that there cannot be a surjective function $f \in (\mathbb{N} \to (\mathbb{N} \to \{0, 1\}))$, therefore between \mathbb{N} and $\{0, 1, 2, 3\}$.
- 2. yes. For example $f \in (P(\mathbb{N}) \rightsquigarrow \mathbb{N})$ defined f(C) = x if $C = \{x\}$ and undefined otherwise.
- 3. no. Suppose by contradiction that such f exists, then we can state that also exists $g \in (f(\mathbb{N}) \leftrightarrow P(\mathbb{N})$. The Cantor's theorem states that there is no bijection between a set A and its part P(A), therefore, in particular, there is no bijection between \mathbb{N} and $P(\mathbb{N})$. Since $f(\mathbb{N}) \subseteq \mathbb{N}$, such g cannot actually exists. We reached a contradiction, so f cannot exists.

Question 3. Let A, B be nonempty sets and let $f \in (A \to B)$. Define a function $g \in (B \rightsquigarrow A)$ such that $dom(g) \neq \emptyset$ and for all $b \in dom(g)$, $(f \circ g)(b) = b$.

Answer 3.1. We define $g \in (f(A) \to A)$ for all $b \in f(A)$ as g(b) = a where f(a) = b. Since f is a total function, f(a) is always defined. Since $f(a) \in f(A)$, g(b) makes sense. Observe that $dom(g) \neq \emptyset$, because f is a total function and $A \neq \emptyset$, therefore $f(A) \neq \emptyset$ and every element of f(A) has a preimage. For all $b \in dom(g)$, f(g(b)) = f(a) = b (see above).