Year 2013/14-Number 4

October 11, 2013

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/zunino/teaching/computability/assignments.

Question 1. Let A, B be sets and suppose that $A \leftrightarrow B$ (i.e. there exists a bijection $f \in(A \rightarrow B))$. Show that for all sets $C,(C \rightarrow(A \times A)) \leftrightarrow(C \rightarrow$ $(A \times B)$).

Answer 1.1. Let Left $\in(X \times Y \rightarrow X)$ and Right $\in(X \times Y \rightarrow Y)$ be the projection maps from a pair onto the left and right component respectively: $\operatorname{Left}(\langle x, y\rangle)=x$
$\operatorname{Right}(\langle x, y\rangle)=y$
Let $h \in(A \leftrightarrow B)$ be a bijection between the given sets A and B. Consider $f \in(C \rightarrow(A \times A))$. It follows that $\forall x \in C, f(x)=<a, b>$, where $a \in A, b \in$ A. We want to build a bijection Φ, such that $\forall f \in(C \rightarrow(A \times A)), \Phi(f) \in$ $(C \rightarrow(A \times B))$. We define $\Phi(f)(x)=<\operatorname{Left}(f(x)), h(\operatorname{Right}(f(x)))>$, for all $x \in C$.
Notice that $h(\operatorname{Right}(f(x)) \in B$ because of the definition of h, therefore the function $\Phi(f)$ is actually an element of $(C \rightarrow(A \times B))$. We can state that Φ is injective because h is injective, therefore different function f, f^{\prime} are mapped in different g, g^{\prime}. We can also state that Φ is surjective because h is bijective, therefore it exists an inverse function h^{-1} which maps every element $b \in B$ onto an element $a \in A$:
Consider $g \in(C \rightarrow(A \times B))$, we define $\Phi^{-1}(g)(x)=<\operatorname{Left}(g(x)), h^{-1}(\operatorname{Right}(g(x)))>$.

Question 2.

1. Does a surjective function $f \in(\mathbb{N} \rightarrow(\mathbb{N} \rightarrow\{0,1,2,3\}))$ exist?
2. Does an injective function $f \in(P(\mathbb{N}) \rightsquigarrow \mathbb{N})$ exist?
3. Does an injective function $f \in(P(\mathbb{N}) \rightarrow \mathbb{N})$ eist?

Justify your answers.

Answer 2.1.

1. no. Notice that it exists a bijection $h \in(P(\mathbb{N}) \leftrightarrow(\mathbb{N} \rightarrow\{0,1\})$ defined $\forall C \in P(\mathbb{N}) h(C)(x)=1$ if $x \in C, 0$ otherwise. Notice also that $(\mathbb{N} \rightarrow\{0,1\}) \subset(\mathbb{N} \rightarrow\{0,1,2,3\}))$. The diagonalization argument used in the proof of Cantor's theorem, states that there is no surjective function between A and $P(A)$, therefore, in particular there is no surjective function between \mathbb{N} and $P(\mathbb{N})$. It follows that there cannot be a surjective function $f \in(\mathbb{N} \rightarrow(\mathbb{N} \rightarrow\{0,1\}))$, therefore between \mathbb{N} and $\{0,1,2,3\}$).
2. yes. For example $f \in(P(\mathbb{N}) \rightsquigarrow \mathbb{N})$ defined $f(C)=x$ if $C=\{x\}$ and undefined otherwise.
3. no. Suppose by contradiction that such f exists, then we can state that also exists $g \in(f(\mathbb{N}) \leftrightarrow P(\mathbb{N})$. The Cantor's theorem states that there is no bijection between a set A and its part $P(A)$, therefore, in particular, there is no bijection between \mathbb{N} and $P(\mathbb{N})$. Since $f(\mathbb{N}) \subseteq \mathbb{N}$, such g cannot actually exists. We reached a contradiction, so f cannot exists.

Question 3. Let A, B be nonempty sets and let $f \in(A \rightarrow B)$. Define a function $g \in(B \rightsquigarrow A)$ such that $\operatorname{dom}(g) \neq \emptyset$ and for all $b \in \operatorname{dom}(g)$, $(f \circ g)(b)=b$.

Answer 3.1. We define $g \in(f(A) \rightarrow A)$ for all $b \in f(A)$ as $g(b)=a$ where $f(a)=b$. Since f is a total function, $f(a)$ is always defined. Since $f(a) \in f(A), g(b)$ makes sense. Observe that $\operatorname{dom}(g) \neq \emptyset$, because f is a total function and $A \neq \emptyset$, therefore $f(A) \neq \emptyset$ and every element of $f(A)$ has a preimage. For all $b \in \operatorname{dom}(g), \mathrm{f}(\mathrm{g}(\mathrm{b}))=\mathrm{f}(\mathrm{a})=\mathrm{b}$ (see above).

